수2 문제하나 질문할께요~
게시글 주소: https://i.orbi.kr/0003218207
미분법 파트에서
함수 f(x) = x3-x2+5x+k = 5x2-4x+1-k 의 그래프가 서로 다른 두 점에서 만난다고 한다. 이때, 가능한 k의 값을 구하여라.
이게 문제인데요... 해설에선 y=F(x)의 그래프와 y=k 의 교점을 살피면 된다고 나왔어요~
근데 k를 이항하지 않고 풀 수 있는 방법은 수2 과정 내에서 없나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
재수안하고 버틸수있으려나이거
-
레전드기만 8
-
아 3
인생 빨리 머리털 깎든가 해야지
-
이별안하는법 3
이건 드립치면 죽을듯
-
그나마 남초팬덤이던게 아이즈원 프미나였는데
-
주류집단인 솔로에게 저항하는거아님뇨? 반박안받음뇨
-
한번 쯤은 다시 생각해보라고 할 듯...
-
차피 스카이 공대쯤 갈 실력되면 대기업은 무난하게 갈 수 있는거 아닌가요?
-
올 수능 기준 언매 100 가까이 떠야 됨?
-
연고서성한 라인에서 신설이 아닌 학과는 작년컷으로 보정들어가서 개짠데 신설학과는...
-
공부해야되뇨 8
하기시름뇨..
-
행복하세요,,, 3
-
계약학과에 대해 궁금한 점이 있는데요, 계약학과는 말그대로 그 학과에 들어가면...
-
운동 끝나고 나면 얼굴이 8등급으로 보이는데 어떡함뇨 8
원래 9등급인데 갑자기 8등급처럼보임뇨 대박적상승임뇨
-
울면서 빈다 야가원
-
맛맀다 주먹밥 넣고 콘마요는 꼭 넣지말고 먹르셈
-
흠뇨
-
출제자 하고싶은데 모집공고같은게 어딨는지 모르겠네요.. 기하선택인데 수학출제자로...
-
언매미적 사문정법 vs 화작기하 지1생2 치대~한의대 목표입니다 국수공통부분이랑...
-
25살에 대학 입학하면 학교생활은 어느 정도 포기해야할까요? 18
군필이고 25살에 대학 입학할거같은데 학교 생활을 어느 정도 포기하고 사는게...
-
질받 7
나이는 묻지 마세여 ㅡㅡ
-
절대로못하는게아님ㅇㅇ
-
표준점수가 입시에 영향이 가는건가요?
-
프미나 릴스랑 숏츠가 거의 절반인데 진짜 뭐임뇨
-
그러면 상처 받을 일도 힘들 일도 없는걸요
-
교대갈걸 그랬나... 넘 힘들다 퓨ㅜㅜㅜㅜ
-
이거알음?
-
체력똥쓰레기라 Pt받을 때마다 쎈b스텝 하중중상 문제 4개 풀고 4개 다 틀리는...
-
전에 이거 실수로 썼는데 저 하얀 거 쓰는 거 아니지?
-
학원 알바 하는 중 심심해서 문제 하나 만들어봤어요! 4
예쁜 문제니 잘 풀어주세요!
-
뉴진스도 난리나고 메이딘도 가은이 탈퇴하고 시그니처도 터진다고 하고 여돌판 어지러운 11월 말...
-
......
-
한여자랑만 연애vs여러여자들이랑 동시에 연인관계
-
추버라 1
으
-
[칼럼] 표본의 이동 방향, 대체 학과, 기피 학과 0
*작년에 올린 두 번째 글입니다. 지난 글에서 말씀드렸다시피 검색밴이 풀려서...
-
김승리 매월승리 1
현강생인데 현장에서 사면 굿즈 안주겠죠
-
다른소속사랑 계약해서 20
다시만났으면 좋겠다... 프로미스나인... 눈물나네
-
제곧내… 과외구해도 너네 안올거자나ㅜㅜ
-
아일릿밖에 안남았다.. 아.
-
가는거 어캐생각하세요?
-
15교육 과정인 시발점 상하 사는게 맞을까요 아니면 시발점 공통수학 12 사는게 맞을까요
-
검정색 경량은 걍 아저씨들이 일상용으로 입는건데 그게 왜 유행? 다른색깔 경량이면 몰라
-
던킨도나츠 맛있겠구만
-
흠
-
일생에 한 번! 고등학교 1학년 재학생만 참가 가능하십니다.뇌과학 및 인공지능...
-
삶과 현실에 초연하다.<——-이거 현실에 저항하는 거니까 틀린거 아님뇨?? 차라리...
-
떴으니까 올리지 뭔가 좀 많이 바뀌었네
-
현역때 대학 붙어서 1년다니다가 휴학하고 수능 한번 더봐서 대학가면 나이는 22에...
-
해체라고 하지 말아줘
위첨자가 안써지네요...;
x옆에 있는 작은 수는 다 위첨자입니다~
x^3-x^2+5x+k = 5x^2 - 4x +1 -k
따라서
g(x) = x^3 - 6x^2 +9x -1 = -2k
라 두시고 g'(x)구하셔서 개형을 구하신후 교점이 두개일때 인 k값을 구해주시면 됩니다.
일반적으로 그래프가 만난다는 점은 대수적으로는 방정식의 해를 구하는 과정이며, 해석학적으로는 그래프의 교점을 의미합니다.
고교 과정에서 이차 방정식까지의 근은 직접 구하거나 판별식을 통해 근의 존재 범위를 추론하여 접근할수 있지만
삼차 이상의 다항 방정식에 대해서는 근을 직접 구하는경우는 매우 드물게 나타납니다. (가령 인수분해 되는정도...)
따라서 교점을 살피는것이 가장 적절한 풀이라 생각되구요.....
물론 k를 이항하지 않은상태에서 삼차와 이차함수의 교점이라 해석할수도 있지만
그렇게 되어버리면 삼차함수와 이차함수가 모두 k, -k만큼 평행이동 하기때문에 매우 복잡하게 구할수 밖에 없습니다.
일반적으로 수학문제를 풀 때에는 구하고자 하는대상을 한쪽으로 몰고 다른 대상을 반대쪽으로 몰아 등식으로 만든후
접근하는것이 보편적인 방법입니다.^^
아~
적절한 풀이가 있으니 굳이 돌아갈 필요가 없다는거군요~ ㅎㅎ
감사합니다~
돌아갈수는 있지만 비효율적이라는거죠.ㅎ
하지만 한번쯤은 A4에 펴놓고 해보시는것두 나쁘지 않을듯 합니다. ㅋ
두 함수가 동시에 움직이는걸 파악 할 정도면 저런 유형은 그냥 발로도 풀리겟죠 ㅋ