[자작] 간단한 수열 문제 하나 풀어보세요
게시글 주소: https://i.orbi.kr/00069647252
공모하기에는 개인적으로도 객관적으로도 문제가 많이 아쉬워서 여기에라도 올려봅니다..!
"두 집합이 같다" 와 수열을 합치니까 적지 않은 수험생들이 실수를 하더라구용 ㅇㅅㅇ
당장 거창한 아이디어가 없어서 기본 구조만 후다닥 만들어서 탄생한 문항..
(2024학년도 6월 12번 발문 참고해봤습니다)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
과생활 어떠셨나요? 돌아가야할 것같은데 과가 극소수과에 전과튀하는 동기들도 많아서 걱정이네요…
-
점심 ㅇㅈ) 2
길냥이 아님 라면도 하나 먹을거임 가운데 붉은건 고추기름 히히
-
가천 논술 자연 0
국어 문법 나올까요..?
-
이런걸 두고 인실좃 이라고 하는거 맞나요? ㅋㅋㅋ
-
부럽네
-
동생이지금 12시간째 컴터앞에서 안비킨다..
-
자꾸 생각나요
-
초비상 2
열 남
-
모닝글로리보다 이게 더 좋다고 생각함
-
11/24 몇시인가요?
-
마크 눈사람을......
-
몇개 없긴한데… 댓글에 더 말씀해주시면 심심할때 정리해볼게용
-
학교랑 겹치는 날 있으면 어카죠?
-
주변에 선배도 없고 조언을 구할 영향력 있는 어른도 없고 사회성은 개박아서 할 줄...
-
그럼 어디서부터 재능의 영역인 것인가?
-
카타오모이 3
ㄹㅇ 가사 너무 이쁨 듣구 있으면 맘이 따뜻해지는...
-
기분 좋음 2
이대 굿즈! 곰돌이 넘 귀엽죵 옛날에 받은 것도 꺼냈어여 이대 호소인 모드...
-
올해 추합 0
올해 의대 증원 이슈로 인해 추합이 좀 많이 돌까요??
-
2022: https://orbi.kr/00042977866 2023:...
-
보기만 해도 눈아픈데 어떻게 하는 걸까..
-
into the sun 리버틴즈 노래입니다.
-
진짜 맛있네 내가 먹은 딸기라떼중에서 제일 맛있음
-
누구는 완자랑 수특 기본문재 돌리고 1등하고 누구는 마더텅 수특 수완 싹다 박박...
-
나잇값좀ㅋㅋ
-
가해자는 “전교 1등 학생이 인사를 안 받아줘서, 앞으로는 서로 인사 잘 하자는...
-
내신 독서,영어,중국어,정법,화1 유기하고 수2,기하만 공부하고 싶구나
-
살 찌겠네 ......,,,,,
-
하제발요ㅠㅠㅠㅠㅠㅠㅠ ㅠ ㅠ ㅠ ㅠ ㅠ ㅠ ㅠ뮤뮤뮤뮤뮤ㅠㅁㅁ
-
놀이공원은 같이 갈 사람이 없고 영화는 볼 영화가 없어서 못 써먹고 있음..
-
의치한 서울대? 1
둘다 못가는데 알바노
-
가슴이 시키는 대로 해라. 끝
-
히히 8
1월 홋카이도 여행 숙소 예약 중인데 기대된다
-
수2, 미적은 미들까지 했는데 수1은 미들부터 너무 빡센데.. 다른거 풀까요 ?
-
생각해보면 휴일은 항상 이랬던 거 같기도 하고
-
에휴
-
2024년 11월 2주차 韓日美全 음악 차트 TOP10 (+11월 1주차 주간VOCAL Character 랭킹) 2
2024년 11월 1주차 차트: https://orbi.kr/00070032058...
-
어느정도 반영되는지는 아직 아무도 모르는것임뇨?
-
소설말고 상식을 좀 기르고 싶어요. 정의란 무엇인가. 총균쇠 이런 류의 책 추천해주세요
-
메가스터디 환급 조건에 보면 단, 허위 답안(한 줄 세우기, 반복 번호 등)을...
-
세종대 수리논술 0
허수 많나요?
-
낼 중논 갈지말지 고민 돼서용
-
데굴데굴 구르면서 들어갈텐데
-
숙대약대 논술본거 잘한거겠지 서울대 안될거같아서 약대논술 쓴거 다감
-
흐음
-
이게맞나... 원래도 이정도 쉬면 이렇게 되긴 했음ㅠ 남들은 안그러시나요.. 지금...
-
전 다 틀렸어요
-
밐 일러 6
밐밐
-
일반고 예비고3입니다 이번 학기부터 내신보다 정시에 중점을 두고 공부하고 있어서...
-
우리 누나가 이대 다녀서 ㅈㄴ이해가면서도..
-
이분 생각났음 ㅅㅂ
2번??
매력적 오답에 당첨되셨습니다
왜 87이 나오지
저도 87나옴
1,-3,4,-5,...,-9,2
87 맞아용
왜 선지에 없나요.. 이거때매 계속 고민했네요
아
선지 편집 실수가.. ㅠㅠㅠㅠㅠㅠㅠ
알려주셔서 감사합니다
밑에 성함있어용
알려주셔서 감사합니다 !!
옆동네에 이미 이름 걸고 실모/N제 배부한 적 있어서 괜찮습니다 !!
풀이는 간단합니다.
구하는 합을 S라 하면 삼각부등식에 의해
S≤(|a_1|+|a_2|)+(|a_2|+|a_3|)+...+(|a_8|+|a_9|)=2*(|a_1|+|a_2|+...+|a_9|)-|a_1|-|a_9|
=90-|a_1|-|a_9|≤90-1-2=87.
아 이런걸 삼각 부등식이라고 부르나요 ??
만들 때 했던 생각이랑 똑같은데 명칭이 있는지는 몰랐네요 ㅇㅅㅇ
넵 삼각형의 세 변을 x,y,z라 할 때 z가 최대이면, z≤x+y라는 거죠. (등호는 넓이가 0)
이를 벡터 공간에서 보면 ||z||=||x+y||≤||x||+||y||인 것이고요.
x,y가 단순히 실수일 때 |x+y|≤|x|+|y|라는 식과 같아지는 것이죠.
오오 새로운거 잘 배워갑니다 !!