1.

수기분에서 못다학
이야기
21. 다음 조건을 만족시키며 최고차항의 계수가 음수인 모든 사차함수 $f(x)$ 에 대하여 $f(1)$ 의 최댓값은? [4점]
(가) 방정식 $f(x)=0$ 의 실근은 $0,2,3$ 뿐이다.
(나) 실수 x 에 대하여 $f(x)$ 와 $|x(x-2)(x-3)|$ 중 크지 않은 값을 $g(x)$ 라 할 때, 함수 $g(x)$ 는 실수 전체의 집합에서 미분가능하다.
(1) $\frac{7}{6}$
(2) $\frac{4}{3}$
(3) $\frac{3}{2}$
(4) $\frac{5}{3}$
(5) $\frac{11}{6}$

수기분에서 못다한 이야기
002. ㅅㅅ관학교기출]

5 차 다항식 $\mathrm{P}(x)$ 를 $(x-1)^{3}$ 으로 나누면 나머지가 8 이고, $\mathrm{P}(x)$ 를 $(x+1)^{3}$ 으로 나누면 나머지가 -8 일 때, $\mathrm{P}(2)$ 의 값을 구하시오.
003. [평가웜기출]

수기분에서 못다한 이야기

$$
\begin{aligned}
& \text { 함수 } f(x)=x^{3}-3 x^{2}-9 x-1 \text { 과 실수 } m \text { 에 대하여 함수 } g(x) \text { 를 } \\
& \quad g(x)= \begin{cases}f(x) & (f(x) \geq m x) \\
m x & (f(x)<m x)\end{cases}
\end{aligned}
$$

라 하자. 함수 $g(x)$ 가 실수 전체의 집합에서 미분가능할 때, m 의 값은?
(1) -14
(2) -12
(3) -10
(4) -8
(5) -6

Enter The Killer 수학 (나혐)

004. [수능기출]

수기분에서 못다한
이야기

좌표평면에서 삼차함수 $f(x)=x^{3}+a x^{2}+b x$ 와 실수 t 에 대하여 곡선 $y=f(x)$ 위의 점
$(t, f(t))$ 에서의 접선이 y 축과 만나는 점을 P 라 할 때, 원점에서 점 P 까지의 거리를 $g(t)$ 라 하자. 함수 $f(x)$ 와 함수 $g(t)$ 는 다음 조건을 만족시킨다.
(가) $f(1)=2$
(나) 함수 $g(t)$ 는 실수 전체의 집합에서 미분가능하다.
$f(3)$ 의 값은? (단, a, b 는 상수이다.)
(1) 21
(2) 24
(3) 27
(4) 30
(5) 33
005. [수능기출]

수기분에서 못다한
이야기
(가) 함수 $f(x)$ 는 $x=2$ 에서 극값을 갖는다.
(나) 함수 $|f(x)-f(1)|$ 은 오직 $x=a(a>2)$ 에서만 미분가능하지 않다.

Enter The Killer 수학 (나형)

006. [수능기출]

수기분에서 못다학
이야기
다음 조건을 만족시키는 모든 삼차함수 $f(x)$ 에 대하여 $\frac{f^{\prime}(0)}{f(0)}$ 의 최댓값을 M, 최솟값을 m 이라 하자.
Mm 의 값은?
(가) 함수 $|f(x)|$ 는 $x=-1$ 에서만 미분가능하지 않다.
(나) 방정식 $f(x)=0$ 은 닫힌 구간 $[3,5]$ 에서 적어도 하나의 실근을 갖는다.
(1) $\frac{1}{15}$
(2) $\frac{1}{10}$
(3) $\frac{2}{15}$
(4) $\frac{1}{6}$
(5) $\frac{1}{5}$

BASIC 01.

개수세기의 기본적이 밤법들

2 이상의 자연수 n 에 대하여 함수 $y=\sqrt{x}$ 의 그래프와 x 축 및 직선 $x=n^{2}$ 으로 둘러싸인 도형의 내부에 있는 점 중에서, x 좌표와 y 좌표가 모두 정수인 점의 개수를 a_{n} 이라
하자. 이 때, $a_{5}+a_{6}+a_{7}$ 의 값을 구하여라. 〔4점〕

BASIC 02.

개수세기의
 기본적이 밤법들

좌표평면에서 2 이상의 자연수 n 에 대하여
두 곡선 $y=\sqrt{x+n}, y=x^{2}-n(x \geq 0)$ 으로 둘러싸인

영역의 내부 또는 그 경계에 포함되고, x 좌표와 y 좌표가
모두 자연수인 점의 개수를 $f(n)$ 이라 하자.
$\sum_{n=2}^{12} f(n)$ 의 값을 구하시오. [4점]

개수세기 훈련하기11

훈련 01 [출제: 박주혁 $]$

평면위에 다음 그림과 같이, $(1,1)$ 부터 (n, n) 까지, 간격이 1 인 점들을 찍어준다. (그림은 $n=4$ 일 때)

그림에서 보듯이, n^{2} 의 점 중에서 서로 다른 4 개의 점을 각각 꼭짓점으로 하는 정사각형의 개수를 a_{n} 이라 하자. 예를 들어,

$$
a_{2}=1, a_{3}=6 \text { 이다. 이때, } \sum_{n=3}^{6} a_{n} \text { 의 값을 구하시오. }
$$

개수세기
 훈련하기11

훈련 02 [평기웜기출]

30. 좌표평면에서 자연수 n 에 대하여 영역

$$
\left\{(x, y) \mid 0 \leq x \leq n, 0 \leq y \leq \frac{\sqrt{x+3}}{2}\right\}
$$

에 포함되는 정사각형 중에서 다음 조건을 만족시키는 모든 정사각형의 개수를 $f(n)$ 이라 하자.
(가) 각 꼭짓점의 x 좌표, y 좌표가 모두 정수이다.
(나) 한 변의 길이가 $\sqrt{5}$ 이하이다.

예를 들어 $f(14)=15$ 이다. $f(n) \leq 400$ 을 만족시키는 자연수 n 의 최댓값을 구하시오. [4점]

귀납적 추론화기
 :갰수세기민 있는 것은
 아니다.

훈력 01 [출제 : 포카칩]

좌표평면에서 자연수 n 에 대하여 다음 조건을 만족시키는
모든 순서쌍 (a, b) 의 개수를 a_{n} 이라 하자. $\sum_{n=1}^{12} a_{n}$ 의 값을
구하시오.
(가) 세 점 $\mathrm{A}\left(t, 2^{t}\right), \mathrm{B}(t, 0), \mathrm{C}(t,-t)$ 에 대하여
$f(t)=\overline{\mathrm{AB}}, g(t)=\overline{\mathrm{AC}}$ 라 할 때, $f(a)-f(b) \leq g(n)$ 이다.
(나) a, b 는 자연수이고 $a>b$ 이다.

귀납적 추론하기
:갯수세기만
있는 것은
아니다.

훈련 $\mathbf{O 2}$ [폄가원기출]
30. 다음 조건을 만족시키는 20 이하의 모든 자연수 n 의 값의 합을 구하시오. [4점]
$\log _{2}\left(n a-a^{2}\right)$ 과 $\log _{2}\left(n b-b^{2}\right)$ 은 같은 자연수이고
$0<b-a \leq \frac{n}{2}$ 인 두 실수 a, b 가 존재한다.

2018학녁도 수능대비 : Enter The Killer 수학 (Lㅏ형)

연습 O1 [출제 : 박주졍; $]$

귀납추론 훈련하기

다음과 같은 다항함수 $f(x), g(x), h(x)$ 가 있다.

$$
f(x)=p x^{3}-1, g(x)=p x^{2}-1, \quad h(x)=q x
$$

이 때, 아래의 조건을 만족하는 두 자연수 p, q 의 모든 순서쌍 (p, q) 의 갯수를 구하시오.
(가) $5<p<200,1<q<5$
(나) 방정식 $f(x)=3 h(x)-2$ 는 서로 다른 두 개의 양의 실근을 갖는다.
(다) 방정식 $g(x)=2 h(x)-2$ 는 실근을 갖지 않는다.

귀납추론 훈련하기

연습 02 [출제 : 포가칩]

집합 $A=\{k \mid k$ 는 자연수, $1 \leq k \leq n\}$ 에 대하여
$a \in A, \quad \frac{a}{\log _{2} a} \in A$
를 모두 만족시키는 a 의 개수를 $f(n)$ 이라 하자. 예를 들어, $f(3)=1, f(8)=2$ 이다.
$f(m)=3$ 이 되도록 하는 자연수 m 의 최댓값을 구하시오. [by 포카칩]

귀ㄴㅏㅏㄴ춘론
연습 $\mathbb{3}$ [출제 : Romanum]
자연수 n 에 대하여 $\frac{n^{2}}{m}$ 와 $\frac{m^{2}}{n}$ 의 값이 모두 자연수가
되도록 하는 자연수 m 의 개수를 $f(n)$ 이라 하자.
예를 들어, $f(5)=2, f(6)=4$ 이다. 이 때, $f(60)-f(40)$ 의 값을 구하시오.

귀납추론 훈련하기

연습 04 추ㄴㅔㅔ : ㅈIgon
전체집합 $U=\{1,2,3,4,5,6,7,8\}$ 의 서로 다른 두
부분집합 A, B 에 대하여 $n(A \cup B)=6, A \cap B=\{2,3,5\}$ 이다. 집합 X 의 원소 중 n 보다 크거나 같은 원소의 개수를 $X(n)$ 이라 할 때, $A(n), B(n)$ 이 다음 조건을 만족시킨다.
(가) $\sum_{n=1}^{8}(A \cup B)(n)=25$
(나) $A(1)>B(1)$
(다) $A(5)-B(7)=1$

집합 A 의 모든 원소의 곱을 구하시오.

2018학년도 수능대비 :
 Enter The Killer 수학 (Lㅏ형)

극한의
기넌내볍 자장비
상항과
미분

극한의
상항과

훈련 01 [출제:포카칩]

다항함수 $f(x)$ 가

$$
\lim _{x \rightarrow \infty} \frac{\{f(x)\}^{3}-1}{x^{4} f(x)+5}=4, \quad \lim _{x \rightarrow 1} \frac{f(x-1)}{f(x)+4}=\infty
$$

를 만족시킬 때, $\frac{f(9)}{f(3)}$ 의 값을 구하시오. [4점] [by 포카쳽]

극한의
 상홤과
 미분

훈력 02 [출제 : 박주혁t]

최고차항의 계수가 1 인 사차함수 $f(x)$ 에 대하여, 다음 조건을 만족한다.
(가) $\lim _{x \rightarrow 2} \frac{(x-2) f^{\prime}(x)}{f(x)}=3, f(0)-16=32 k \quad(k>0)$
(나) 방정식 $f^{\prime}(x)+a=0$ 이 서로 다른 두 실근을 가질 때, a 의 값 중 큰 것을 α 라 하자.
$\alpha=16$ 일 때, $\int_{2}^{k+5}|f(x)| d x=\frac{q}{p}$ 이다. $p+q$ 를 구하시오. [4점] (단, p, q 는 서로소인 정수)

2018학년도 수능대비 : Enter The Killer 수하 (나형)

미적분의 다양한 상함연습
©해석연습
최고차항의 계수가 1 인 삼차함수 $f(x)$ 에 대하여

$$
\left|\frac{f^{\prime}(0)}{f^{\prime}(2)}\right|+\left|\frac{f(2)}{f(0)}\right|=0
$$

을 만족시킬 때, 옳은 것만을 <보기>에서 있는 대로 고른 것은?

ㄱ. $f(0)<0$ 이면 $f^{\prime}(2)>0$ 이다.
ᄂ. $f(0)>0$ 이면 $f(x)$ 는 $x=0$ 에서 극댓값을 갖는다.
ᄃ. $f(-1)=0$ 인 삼차함수 $f(x)$ 가 존재한다.
(1) ᄀ
(2) ᄂ
(3) ᄃ
(4) ᄀ, ᄂ
(5) ᄀ, ᄂ, ᄃ

훈련 01

최고차항의 계수가 1 이고, $f^{\prime}(0)=5$ 인 사차함수 $f(x)$ 가 있다.
실수 t 에 대하여 집합 S 를
$S=\{m \mid$ 모든 실수 x 에 대하여 $f(x) \geq m(x-t)+f(t)\}$
라 하고, 집합 S 의 원소의 개수를 $g(t)$ 라 하자. 함수 $g(t)$ 가
$t=-1$ 과 $t=2$ 에서만 불연속일 때, $f^{\prime}(3)$ 의 값은? [4점] [by L]
(1) 39
(2) 41
(3) 43
(4) 45
(5) 47

미적분의
다양한
상함연습

훈련 02
최고차항의 계수가 1 이고 x 축과 적어도 한 점에서 만나는 사차함수 $f(x)$ 에 대하여 $g(x), h(x)$ 를 다음과 같이 정의한다.

$$
g(x)=\left\{\begin{array}{cl}
1 & (f(x)>0) \\
0 & (f(x)=0), \\
-1 & (f(x)<0)
\end{array} h(x)=\left\{\begin{array}{cl}
1 & \left(f^{\prime}(x)>0\right) \\
0 & \left(f^{\prime}(x)=0\right) \\
-1 & \left(f^{\prime}(x)<0\right)
\end{array}\right.\right.
$$

함수 $g(x) h(x)$ 가 $x=0$ 과 $x=3$ 에서만 불연속이고,
$\lim _{x \rightarrow 0} g(x) h(x)$ 가 존재할 때, $f(5)$ 의 값을 구하시오. [by Romanum]

2018학년도 수능대비 :
 Enter The Killer 수학 (Lㅏ형)

훈렴 @

삼차함수 $f(x)$ 가 다음 조건을 만족시킬 때, $f(2)$ 의 값은? [by 리듬농구]
[4점]
(가) $f(1)=4$
(나) 모든 실수 x 에 대하여 $f(x) \geq x^{3}+3 x^{2}$ 이다.
(다) 모든 실수 x 에 대하여 $f^{\prime}(x) \geq f^{\prime}(-2)$ 이다.
(1) 21
(2) 22
(3) 23
(4) 24
(5) 25

미적분의
다양한
상함엽습

훈련 04

곡선 $y=f(x)$ 의 그래프는 $x=1$ 에 대하여 대칭이고,

$$
\lim _{h \rightarrow 0+} \frac{f(h)-f(2)}{h}=3, \lim _{h \rightarrow 0+} \frac{f(2+h)-f(0)}{h}=5
$$

를 만족시킬 때, $\lim _{h \rightarrow 0-} \frac{f(2+h)-f(2 h)}{h}$ 의 값은? [4점] [by 퐄ㅊㅊㅁ
(1) -7
(2) -1
(3) 1
(4) 2
(5) 7

미적분의
다양한
상함연습

훈련 05

사차함수 $f(x)$ 에 대하여 $g(x)$ 를

$$
g(x)= \begin{cases}f(x) & (x \leq 1) \\ f(-x) & (x>1)\end{cases}
$$

라 하자. $g(x)$ 가 다음 조건을 만족시킬 때, $f(3)-g(3)$ 의 값을
구하시오. [4점] [by 포카칩]
(가) $\lim _{h \rightarrow 0+} g(1+h)-g(1)=2$
(나) $\lim _{h \rightarrow 0} \frac{g(1+2 h)-g(1+h)}{h}$ 이 존재한다.

미적분의
다얌한
상항연습

훈련 06

함수 $f(x)=x^{3}+9 x^{2}$ 와 자연수 n 에 대하여 함수 $g(t)$ 는 다음 조건을 만족시킨다. [by 리듬농구]
(가) 함수 $y=f(x)$ 위의 점 $(t, f(t))$ 에서의 접선은 점 $(-n, g(t))$ 를 지난다.
(나) 함수 $g(t)$ 가 극솟값을 가질 때, 그 극소점의 t 의 좌표는 a_{n} 이다.
$\sum_{n=1}^{10} a_{n}$ 의 값은? [4점] (단, 극솟값이 없는 경우, $a_{n}=0$ 이라 하자)
(1) -55
(2) -56
(3) -57
(4) -58
(5) -59

미적분의
다양한
상항연습

훈련 07 디듬누구 변형

최고차항의 계수가 1 인 삼차함수 $f(x)$ 가

$$
\lim _{x \rightarrow 1}\left(\frac{1}{x-1} \times\left|\frac{f(x)}{x}\right|\right)=f(2)
$$

를 만족할 때, $\int_{3}^{4} \frac{f(x)}{x-1} d x$ 의 값은? [4점]
(1) $\frac{17}{6}$
(2) $\frac{19}{6}$
(3) $\frac{23}{6}$
(4) $\frac{25}{6}$
(5) $\frac{29}{6}$

2018학녁도 수능대비 : Enter The Killer 수학 (Lㅏ형)

미적분의
다양한
상함연습

훈련 08

최고차항의 계수가 1인 사차함수 $f(x)$ 가 모든 실수 x 에 대하여
$f(2-x)=f(2+x)$ 를 만족한다. 구간 $[t-1, t]$ 에서 $f(x)$ 의 최솟값을 $g(t)$ 라고 할 때, $-1 \leq t \leq 0$ 에서 $g^{\prime}(t)=0$ 이다. 이때, $g^{\prime}(7)$ 의 값은? [by 박주혁]
(1) 48
(2) 78
(3) 108
(4) 112
(5) 320

미적분의

다양한
상황엽습

훈련 09

사차함수 $f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x$ 에 대하여

$$
\sum_{k=1}^{4 n}\left|f\left(\frac{k}{n}\right)-f\left(\frac{k-1}{n}\right)\right| \frac{1}{n}<3
$$

을 만촉시키는 자연수 n 의 최솟값은? [4점] [by Romanum]
(1) 3
(2) 5
(3) 7
(4) 9
(5) 11

TOTAL
 연습문제

TOTAL 01
두 집합 A_{n}, B_{n} 은 다음과 같다.

$$
\begin{aligned}
& A_{n}=\left\{(a, b) \mid \log _{n} a, \log _{n}(2 n-b) \text { 은 각각 } 0\right. \text { 보다 크고 } \\
&\quad 1 \text { 보다 작은 유리수이고, } a, b \text { 는 자연수이다. }\} \\
& B_{n}=\left\{(a, b) \mid a+b \neq 2 n, \quad(a, b) \in A_{n}\right\}
\end{aligned}
$$

n 이 1000 이하의 자연수일 때, 집합 B_{n} 의 원소의 개수로 가능한 모든 값들의 합을 구하시오. [4점] [리듬농구]

TOTAL

TOTAL 02
최고차항의 계수가 양수인 삼차함수 $f(x)$ 가 다음 조건을
만족시킬 때, $\int_{-2 \sqrt{2}}^{2 \sqrt{2}} f(x) d x$ 의 값은? [4점] [스파르타쿠스]
(가) 방정식 $\left|f^{\prime}(x)\right|=2$ 의 근이 $-4,0,4$ 이다.
(나) $f(2 \sqrt{2})=0$
(1) $\frac{62}{3}$
(2) 21
(3) $\frac{64}{3}$
(4) $\frac{65}{3}$
(5) 22

TOTAL
 TOTAL ©
 연습문제
 닫힌 구간 $[0,3]$ 에서 정의된 함수 $y=f(x)$ 의 그래프가
 그림과 같다.

방정식 $f(f(x)+x)=1$ 의 서로 다른 실근의 개수는? [4점] [리듬농구]
(1) 3
(2) 4
(3) 5
(4) 6
(5) 7

TOTAL
 연습문제

TOTAL 04

좌표평면에서 중심이 곡선 $y=\sqrt{x+1}+a$ 위에 있고 x 축,
y 축에 동시에 접하는 원의 개수를 $f(a)$ 라 하자. $f(a) \geq 2$ 를 만족시키는 모든 정수 a 의 값의 합을 구하시오. [스파르타쿠스]

TOTAL

TOTAL 05
최고차항의 계수가 1 인 삼차함수 $f(x)$ 가 다음 조건을
만족시킬 때, 서로 다른 모든 $f(-1)$ 의 값의 합은? [4점] [리듬농ㄱ]
(가) $x \leq-1$ 일 때, 함수 $f(x)$ 의 최댓값은 16 이다.
(나) $-1 \leq x \leq 0$ 일 때, 함수 $f(x)$ 의 최솟값은 0 이다.
(다) $x \geq 0$ 일 때, 함수 $f(x)$ 의 최솟값은 -16 이다.
(1) 21
(2) 23
(3) 25
(4) 27
(5) 29

TOTAL
 연습문제

TOTAL 06

$\overline{\mathrm{AB}_{1}}=2 \overline{\mathrm{~B}_{1} \mathrm{C}_{1}}$ 을 만족하고, $\overline{\mathrm{AB}_{1}}=\overline{\mathrm{AC}_{1}}$ 인 이등변삼각형 $\mathrm{AB}_{1} \mathrm{C}_{1}$ 에 내접하는 원의 넓이는 9π 이다. 그림과 같이 삼각형 $\mathrm{AB}_{1} \mathrm{C}_{1}$ 의 내접원의 중심을 지나고, 선분 $\mathrm{B}_{1} \mathrm{C}_{1}$ 과 평행한 직선이 두 선분 $\mathrm{AB}_{1}, \mathrm{AC}_{1}$ 과 만나는 점을 각각 $\mathrm{B}_{2}, \mathrm{C}_{2}$ 라 하자.
마찬가지로, 삼각형 $\mathrm{AB}_{2} \mathrm{C}_{2}$ 의 내접원의 중심을 지나고 선분 $\mathrm{B}_{2} \mathrm{C}_{2}$ 과 평행한 직선이 두 선분 $\mathrm{AB}_{2}, \mathrm{AC}_{2}$ 과 만나는 점을 각각 $\mathrm{B}_{3}, \mathrm{C}_{3}$ 라 하자.
이와 같은 과정을 계속하여 n 번째 얻은 삼각형 $\mathrm{AB}_{n} \mathrm{C}_{n}$ 에 내접하는 원의 넓이를 S_{n} 이라
할 때, $\sum_{n=1}^{\infty} S_{n}$ 의 값은? [by 푘ㅊㅂㅊㅣ

(1) 16π
(2) 18π
(3) 21π
(4) 22π
(5) 25π

TOTAL

 연습문제
TOTAL 07

자연수 n 에 대하여 두 집합

$$
\begin{aligned}
& A=\left\{\left(x_{1}, y_{1}\right) \mid\left(x_{1}-n\right)\left(y_{1}-n\right)>1, x_{1}, y_{1} \text { 은 정수 }\right\} \\
& B=\left\{\left(x_{2}, y_{2}\right) \mid-x_{2}+a \leq y_{2} \leq-x_{2}+b, x_{2}, y_{2} \text { 는 정수 }\right\}
\end{aligned}
$$

이 있다. 다음 조건을 만족시키는 순서쌍 (a, b) 의 개수를
$f(n)$ 이라 할 때, $f(3)+f(5)$ 의 값을 구하시오. [by 스파르타쿠스
(가) a, b 는 10 이하의 정수이다.
(나) $A \cap B$ 의 원소의 개수는 2 개 이상 5 개 이하이다.

TOTAL
 연습문제

TOTAL 08

최고차항의 계수가 1 인 삼차함수 $f(x)$ 에 대하여 곡선 $y=f(x)$ 가 x 축과 만나는 점을 A 라 하자. 곡선 $y=f(x)$ 위의 점 A 에서의 접선을 l 이라 할 때, 직선 l 이 곡선 $y=f(x)$ 와
만나는 점 중에서 A 가 아닌 점을 B 라 하자. 또, 곡선 $y=f(x)$
위의 점 B 에서의 접선을 m 이라 할 때, 직선 m 이 곡선
$y=f(x)$ 와 만나는 점 중에서 B 가 아닌 점을 C 라 하자. 두 직선
l, m 이 서로 수직이고 직선 m 의 방정식이 $y=x$ 일 때, 곡선
$y=f(x)$ 위의 점 C 에서의 접선의 기울기는? (단, $f(0)>0$ 이다.) [by 2016 사관문과]

(1) 8
(2) 9
(3) 10
(4) 11
(5) 12

TOTAL

연습문제

TOTAL 09

함수 $f(x)=x^{3}-6 x$ 에 대하여, 함수 $g(x)$ 와 $g^{\prime}(x)$ 가 다음과 같다. $g(x)=\{f(x)\}^{3}-6 f(x), g^{\prime}(x)=3 f^{\prime}(x)\left\{(f(x))^{2}-2\right\}$

이 때, 함수 $g(x)$ 의 극댓값을 갖는 x 좌표의 갯수를 a,
극솟값을 갖는 x 좌표의 갯수를 b,
그리고 $P=\{k \mid k$ 는 $g(x)$ 의 극댓값 $\}$ 이라 할 때, $n(P)=c$ 라 하자.
$a+b+c$ 의 값을 구하시오. [EBS 변형 -박주현t]
(1) 8
(2) 9
(3) 10
(4) 11
(5) 12

TOTAL 연습문제

TOTAL 10

자연수 m 에 대하여 $f(m)$ 을 다음 조건을 만족시키는 자연수 a, b 의 모든 순서쌍 (a, b) 의 개수라고 하자.
(가) $1 \leq a \leq m, 1 \leq b \leq m$
(나) $\log _{2} a-\log _{2} b$ 는 정수이다.

예를 들어 $f(8)=22$ 이다. $\lim _{n \rightarrow \infty} \frac{f\left(2^{n+1}\right)-f\left(2^{n}\right)}{f\left(2^{n+2}\right)}=\frac{q}{p}$ 일 때, $p^{2}+q^{2}$
의 값을 구하시오. (단, p 와 q 는 서로소인 자연수이다.) [4점] [by L]

