2020학년도 3월 전국연합학력평가 대비 러셀모의고사

수학 영역 (가형)

홀수형

성명		수험 번호			_			
								1

- 자신이 선택한 유형(가형/나형)의 문제지인지 확인하시오.
- 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
- 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

모래는 바위다 너는 작지 않다 너는 세상이다

- 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험번호, 문형 (홀수/짝수), 답을 정확히 표시하시오.
- 단답형 답의 숫자에 '0'이 포함되면 그 '0'도 답란에 반드시 표시하시오.
- 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.
- 계산은 문제지의 여백을 활용하시오.

※ 시험이 시작되기 전까지 표지를 넘기지 마시오.

메가스터디교육(주)

제 2 교시

수학 영역(가형)

5 지선다형

- **1.** 함수 $f(x) = xe^{x-1}$ 에 대하여 f'(1)의 값은? [2점]

 - ① 2 ② 3 ③ 4 ④ 5
- **3.** $\int_0^{\ln 2} e^{2x} dx$ 의 값은? [2점]

- ① 3 ② $\frac{5}{2}$ ③ 2 ④ $\frac{3}{2}$ ⑤ 1

- 2. $\lim_{x\to 0} \frac{\ln(1+4x)}{x(x+3)}$ 의 값은? [2점]

- ① 1 ② $\frac{4}{3}$ ③ $\frac{5}{3}$ ④ 2 ⑤ $\frac{7}{3}$
- 4. 여섯 개의 문자 r, u, s, s, e, l를 일렬로 배열하는 경우의
 - ① 300

- ② 320 ③ 340 ④ 360 ⑤ 380

- 5. 함수 $f(x) = \frac{2}{3-x}$ 에 대하여 $\lim_{h\to 0} \frac{f(2+h)-f(2)}{h}$ 의 값은? [3점]

- ① 1 ② $\frac{3}{2}$ ③ 2 ④ $\frac{5}{2}$ ⑤ 3

- 6. $\cos\theta = \frac{\sqrt{3}}{3}$ 일 때, $\sin\left(\frac{\pi}{3} + \theta\right)$ 의 값은? (단, $0 < \theta < \frac{\pi}{2}$) [3점]
 - ① $\frac{-2+\sqrt{6}}{6}$ ② $\frac{3-\sqrt{6}}{6}$ ③ $\frac{-1+\sqrt{6}}{6}$

- 7. a>1인 실수 a에 대하여 함수 $f(x)=a^x$ 은 닫힌 구간 [1, 2] 에서 최솟값 m, 최댓값 $\frac{9}{4}$ 를 갖는다. a+m의 값은? [3점]
 - ① 3
- ② 4 ③ 5
- **4** 6

- 8. 양수 a에 대하여 함수 $f(x)=a\sin(ax)+3$ 의 주기가 $\frac{3\pi}{2}$ 일 때, 함수 f(x)의 최댓값은? [3점]

 - ① 4 ② $\frac{13}{3}$ ③ $\frac{14}{3}$ ④ 5 ⑤ $\frac{16}{3}$

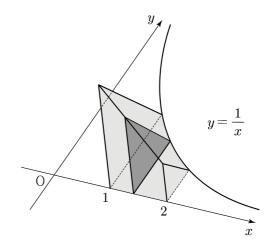
9. $0 \le \theta < 2\pi$ 일 때, x에 대한 이차방정식

$$x^2 + (2\sin\theta)x + \cos\theta + \frac{5}{4} = 0$$

- 이 실근을 갖도록 하는 모든 θ 의 값의 합은? [3점]
- ① $\frac{\pi}{3}$ ② $\frac{\pi}{2}$ ③ π ④ $\frac{2\pi}{3}$ ⑤ 2π

10. 그림과 같이 곡선 $y = \frac{1}{x} (x > 0)$ 과 x 축, x = 1 및 x = 2로

둘러싸인 도형을 밑면으로 하는 입체도형이 있다. 이 입체도형을 x축에 수직인 평면으로 자른 단면이 모두 정삼각형일 때, 이 입체도형의 부피는? [3점]



- ① $\frac{\sqrt{3}}{4}$ ② $\frac{\sqrt{3}}{6}$ ③ $\frac{\sqrt{3}}{8}$ ④ $\frac{\sqrt{3}}{10}$ ⑤ $\frac{\sqrt{3}}{12}$

- 11. 두 함수 $f(x) = 2^x$, $g(x) = \log_2 x$ 에 대하여 두 곡선 y = f(x), y=g(x)와 직선 y=-x+k가 만나는 교점의 x좌표를 각각 α , β 라 하자. $\alpha+\beta=6$ 일 때, 상수 k의 값은? [3점]
 - ① 6

- ⑤ 8
- 12. 다음 조건을 만족시키는 음이 아닌 정수 a, b, c, d의 모든 순서쌍 (a, b, c, d)의 개수는? [3점]
 - (7) a+b+c+d=6
 - (나) a는 4의 양의 약수이다.
 - ① 38
- 2 40
- ③ 42
- **4**4
- ⑤ 46

- 13. 양수 k에 대하여 $f(x) = \ln(x^2 + k)$ 가 있다. $0 < x_1 < 1 < x_2$ 인 임의의 두 실수 $x_1, \; x_2$ 에 대하여 $f''(x_1)f''(x_2) < 0$ 일 때, f(k) 의 값은? [3점]
- ① $\ln \frac{7}{2}$ ② $\ln 3$ ③ $\ln \frac{5}{2}$ ④ $\ln 2$ ⑤ $\ln \frac{3}{2}$

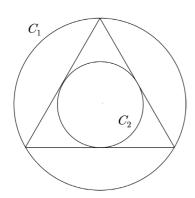
- 14. 실수 전체의 집합에서 미분가능한 함수 f(x)가 모든 실수 x에 대하여

$$f(e^x) = x^3 + x$$

를 만족시킬 때, 함수 f(x)의 역함수를 g(x)라 하자. g'(2)의 값은? [4점]

- ① $\frac{e}{8}$ ② $\frac{e}{4}$ ③ $\frac{3}{8}e$ ④ $\frac{e}{2}$ ⑤ $\frac{5}{8}e$

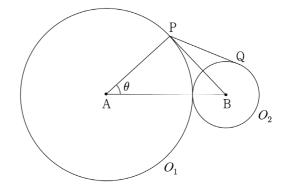
15. 그림과 같이 원 C_1 의 내부에 접하는 정삼각형에 내접한 원을 C_2 라 하자. 이렇게 만들어지는 7개의 영역에 서로 다른 5가지 색을 모두 사용하여 한 영역에 한 가지 색만을 칠하려고 한다. 정삼각형의 내부와 원 C_2 의 외부의 공통 영역에는 같은 색을 칠하고, 나머지 4개의 영역에는 서로 다른 색을 칠할 때, 색칠한 결과로 나올 수 있는 경우의 수는? (단, 회전하여 일치하는 것은 같은 것으로 본다.) [4점]



- ① 20
- 2 25
- 3 30
- **4** 35
- ⑤ 40

16. 그림과 같이 반지름의 길이가 1이고 중심이 A인 원 O_1 위에 점 P가 있다. 점 P에서의 접선 위의 점 B에 대하여 점 B를 중심으로 하고 원 O_1 에 외접하는 원을 O_2 라 하자. 원 O_2 위의 점 Q에 대하여 직선 PQ가 원 O_2 에 접한다.

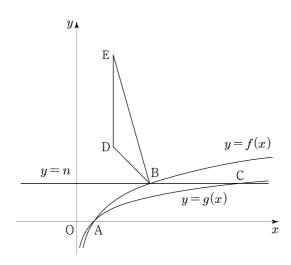
 $\angle \operatorname{PAB} = \theta$ 일 때, $\lim_{\theta \to 0+} \frac{\overline{\operatorname{PQ}}}{\theta}$ 의 값은? (단, $0 < \theta < \frac{\pi}{2}$ 이고, $\overline{AB} < \overline{AQ}$ 이다.) [4점]



- ① $\frac{1}{3}$ ② $\frac{1}{2}$ ③ $\frac{2}{3}$ ④ $\frac{5}{6}$

17. 좌표평면에 두 함수 $f(x) = \log_2 x$, $g(x) = \log_3 x$ 와 점

A(1, 0)가 있다. 2 이상의 자연수 n에 대하여 직선 y=n과 두 곡선 y=f(x), y=g(x)의 교점을 각각 B, C라 하고, 두 점 B, C를 직선 y=x에 대하여 대칭이동한 점을 각각 D, E라 하자. 삼각형 ABC의 넓이를 S_1 , 삼각형 BDE의 넓이를 S_2 라 할 때, $2S_2 < 3S_1$ 이다. \overline{BC} 의 값은? [4점]



- ① 2
- ② 3
- 3 4
- **4** 5
- **⑤** 6

- **18.** 함수 $f(x)=x^3-3x^2+kx$ 가 상수 a에 대하여 다음 조건을 만족시킨다.
 - (7) $\tan a = 3$
 - $(\downarrow) \int_0^a \tan^3 x \times f'(\tan x) dx + \int_0^a \tan x \times f'(\tan x) dx = 3$

상수 *k*의 값은? [4점]

- ① $-\frac{1}{2}$ ② $-\frac{2}{3}$ ③ $-\frac{5}{6}$ ④ -1 ⑤ $-\frac{7}{6}$

19. 삼차함수 f(x)에 대하여 실수 전체의 집합에서 미분가능한 함수 g(x)를

$$g(x) = \begin{cases} f(x) & (x < 0) \\ e^{-x^2} & (x \ge 0) \end{cases}$$

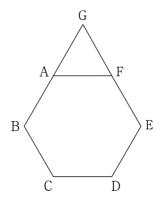
라 할 때, <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

----<보 기>---

- \neg . 함수 g(x)가 극대 또는 극소가 되는 x의 개수가 1일 때, 함수 g(x)는 최댓값을 갖는다.
- ㄴ. 함수 g(x)가 최솟값을 가지고, g'(k)=0이면 g(k) < 0이다. (단, k < 0)
- \Box . 함수 g(x)가 x=-2에서 최솟값을 가지고, 변곡점이 되는 모든 y좌표의 곱이 $\frac{1}{2}e^{-\frac{1}{2}}$ 일 때, 함수 g(x)의 최솟값은 -1이다.
- ① ¬
- ② ¬, ∟
- ③ 7. ⊏

- ④ ∟, ⊏
 ⑤ ¬, ∟, ⊏

20. 정육각형 ABCDEF에 대하여 직선 AB와 직선 EF의 교점 G가 있다. 7개의 점 중에서 3개의 점을 이어서 만들 수 있는 모든 삼각형의 개수를 n이라 하자. 각각의 점과 1부터 7까지의 자연수를 임의로 하나씩 대응시킨 후 각각의 삼각형에 대하여 세 꼭짓점과 대응되는 수의 합을 $s_1,\,s_2,\,\cdots,\,s_n$ 이라 하자. 다음은 $s_1 + s_2 + \cdots + s_n = 388$ 이 되도록 각각의 점과 1부터 7까지의 자연수를 하나씩 대응시키는 모든 경우의 수를 구하는 과정이다.



7개의 점 중에서 3개의 점을 선택해서 3개의 점에 대응되는 수를 모두 더한 값의 합은 (가) 이다. 따라서 세 점 A, B, G와 세 점 E, F, G에 대응되는 수의 합을 각각 s_{n+1} , s_{n+2} 라 하면 $s_{n+1} + s_{n+2} = 32$ 이다.

 $1 \le k \le n+2$ 인 모든 자연수 k에 대하여 $s_k \le 18$ 이므로 순서쌍 (s_{n+1}, s_{n+2}) 는 (18, 14), (17, 15), (16, 16), (15, 17), (14, 18)이 될 수 있다.

- i) (s_{n+1}, s_{n+2}) =(18, 14)인 경우 $s_{n+1} = 5 + 6 + 7$, $s_{n+2} = 3 + 4 + 7$ 이므로 이를 만족시키도록 7개의 점과 자연수를 대응시키는 모든 경우의 수는 (나) 이다.
- ii) (s_{n+1}, s_{n+2}) =(17, 15)인 경우

따라서 구하고자 하는 모든 경우의 수는 (다)이다.

위의 (가), (나), (다)에 알맞은 수를 각각 a, b, c라 할 때, $\frac{a \times b}{c}$ 의 값은? [4점]

- ① 60
- 2 70 3 80 4 90

- (5) 100

21. 실수 전체의 집합에서 정의된 연속함수 f(x)가 음이 아닌 실수 x에 대하여 다음 조건을 만족시킨다.

(가)
$$f(x) = \pi |\sin(\pi x)|$$

(나) $f\left(-\frac{x}{k}\right) = -f(x)$ (단, $2 < k < 4$)

함수 $y = \left| \int_1^x f(t)dt + \frac{3}{4} \right|$ 가 한 점에서만 미분가능하지 않을 때, 상수 *k*의 값은? [4점]

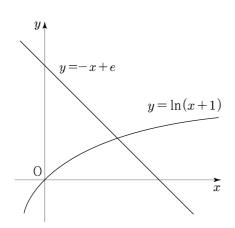
- ① $\frac{13}{5}$ ② $\frac{14}{5}$ ③ 3 ④ $\frac{16}{5}$ ⑤ $\frac{17}{5}$

단답형

22. $\sec^2\theta + \tan^2\theta = 4$ 일 때, $10\sin^2\theta$ 의 값을 구하시오. [3점]

23. 곡선 $y = \sqrt{x^2 + 3}$ 에 대하여 곡선 위의 점 (1, 2) 에서의 접선의 방정식이 y=ax+b일 때, 100ab의 값을 구하시오. [3점] $24. \left(ax^2 + \frac{1}{x}\right)^5$ 의 전개식에서 x의 계수와 $\frac{1}{x^2}$ 의 계수가 같을 때, 100a의 값을 구하시오. (단, a는 양수이다.) [3점]

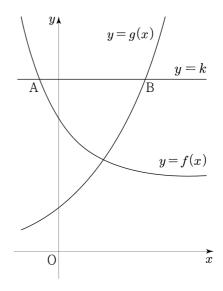
25. 그림과 같이 곡선 $y=\ln(x+1)$ 과 직선 y=-x+e가 점 $(e-1,\ 1)$ 에서 만난다. 곡선 $y=\ln(x+1)$ 과 직선 y=-x+e 및 x 축으로 둘러싸인 부분의 넓이가 k일 때, 24k의 값을 구하시오. (단, k는 상수이다.) [3점]



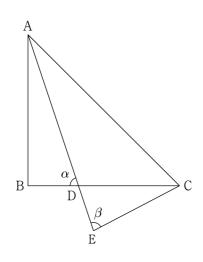
26. 두 곡선

$$f(x) = 4^{-x} + 2$$
, $g(x) = 2^x$

과 직선 y=k (k>3)이 만나는 두 점을 각각 A, B라 할 때, 선분 AB를 1:2로 내분하는 점의 x좌표가 $\frac{1}{3}$ 이다. 삼각형 OAB의 넓이를 구하시오. (단, O는 원점이다.) [4점]



 $27. \ \angle {\rm ABC} = \frac{\pi}{2}, \ \overline{\rm AB} = \overline{\rm BC} = 3$ 인 직각삼각형 ABC가 있다. 선분 BC 위의 점 D에 대하여 삼각형 ADC의 넓이가 3이고, 직선 AD의 연장선 위의 점 E에 대하여 CDE의 넓이가 $\frac{9}{10}$ 일 때, $\angle {\rm ADB} = \alpha, \ \angle {\rm CED} = \beta$ 라 하자. $\tan(\beta - \alpha) = \frac{q}{p}$ 일 때, p + q의 값을 구하시오. (단, $\alpha < \beta$ 이고, p와 q는 서로소인 자연수이다.)



28. 실수 전체의 집합에서 미분가능한 두 함수 f(x), g(x)가 모든 실수 x에 대하여 다음 조건을 만족시킨다.

$$(7) f(x) = e^x \int_0^x g(t) dt - 2e^3$$

$$(\downarrow \downarrow) f'(x)g(x) = x^2 e^x$$

$$f(3)=e^3$$
일 때, $\int_0^3 \{g(x)\}^2 dx = k$ 라 하자. $10k$ 의 값을 구하시오. [4점]

29. 그림과 같은 15개의 사물함에 크기와 모양이 같은 1이 적혀 있는 공 6개와 2가 적혀 있는 공 9개를 1개씩 넣으려고 한다. 같은 층에서는 서로 이웃한 두 사물함에 각각 들어 있는 공에 적혀 있는 수의 곱이 짝수이다. 예를 들어, 1층 2번 사물함과 1층 3번 사물함에 들어 있는 공에 적혀 있는 수의 곱은 짝수이다. 공 15개를 사물함에 1개씩 넣는 모든 경우의 수를 구하시오. [4점]

3층	@	@	©	@	@
2층	@	@	Ġ:	@	@
1층	ල	ු	Ġ:	ලා	ල
ı	 1번	2번	3번	4번	 5번

30. 양수 p와 실수 q에 대하여 함수 $f(x) = p\sin\left(\frac{\pi}{2}x\right) + q$ 가 있다.

최고차항의 계수가 1이고, $x=\frac{2}{3}$ 에서 극솟값을 가지는 삼차함수 g(x)에 대하여 열린 구간 (0, n)에서 합성함수 $h(x)=(g\circ f)(x)$ 가 극대 또는 극소가 되는 x의 개수를 a_n 이라 할 때, 수열 $\{a_n\}$ 이 다음 조건을 만족시킨다.

- $(7) \ a_2 a_1 < a_4 a_3$
- (나) 모든 자연수 n에 대하여 $g(n-a_n)=0$ 이다.

함수 h(x)가 극댓값 0, 4를 가질 때, g(5p+q)의 값을 구하시오 [4점]

※ 시험이 시작되기 전까지 표지를 넘기지 마시오.

2020학년도 3월 전국연합학력평가 대비 러셀모의고사

정답 및 해설

• 수학 영역 •

(가)형 정답

1	1	2	2	3	4	4	4	5	3
6	(5)	7	1	8	2	9	(5)	10	3
11	1	12	3	13	4	14	2	15	(5)
16	(5)	17	4	18	3	19	1	20	2
21	4	22	6	23	75	24	50	25	36
26	5	27	22	28	45	29	399	30	180

해설

1. [정답] ①

 $f(x) = xe^{x-1}$ 에서 $f'(x) = e^{x-1} + xe^{x-1}$ 이므로 f'(1) = 1 + 1 = 2이다.

2. [정답] ②

$$\lim_{x \to 0} \frac{\ln(1+4x)}{x(x+3)} = \lim_{x \to 0} \left\{ \frac{\ln(1+4x)}{4x} \times \frac{4}{x+3} \right\} = \frac{4}{3}$$

3. [정답] ④

$$\int_{0}^{\ln 2} e^{2x} dx = \left[\frac{1}{2} e^{2x} \right]_{0}^{\ln 2} = 2 - \frac{1}{2} = \frac{3}{2}$$

4. [정답] ④

여섯 개의 문자 중 s 가 2 번 중복되므로 여섯 개의 문자 $r,\ u,\ s,\ s,\ e,\ l$ 을 일렬로 배열하는 경우의 수는 $\frac{6!}{2!} = 360$ 이다.

5. [정답] ③

$$f(x) = \frac{2}{3-x} \text{ 에서 } f'(x) = \frac{2}{(3-x)^2} \text{ 이다.}$$

$$\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = f'(2) \text{ 이므로}$$

$$f'(2) = \frac{2}{(3-2)^2} = 2 \text{ 이다.}$$

6. [정답] ⑤

$$0 < \theta < \frac{\pi}{2}$$
이코, $\cos \theta = \frac{\sqrt{3}}{3}$ 이므로
$$\sin \theta = \frac{\sqrt{6}}{3}$$
이라.
$$\therefore \sin \left(\frac{\pi}{3} + \theta\right) = \sin \frac{\pi}{3} \cos \theta + \cos \frac{\pi}{3} \sin \theta$$
$$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{3} + \frac{1}{2} \cdot \frac{\sqrt{6}}{3}$$
$$= \frac{3 + \sqrt{6}}{6}$$

7. [정답] ①

a>1이므로 $f(x)=a^x$ 는 닫힌 구간 $[1,\ 2]$ 에서 증가함수이다. 즉, 함수 f(x)는 x=1 에서 최솟값, x=2 에서 최댓값을 가진다.

따라서
$$f(2) = a^2 = \frac{9}{4}$$
 에서 $a > 1$ 이므로 $a = \frac{3}{2}$ 이고,
$$f(1) = \frac{3}{2} = m$$
 이므로 $a + m = \frac{3}{2} + \frac{3}{2} = 3$ 이다.

8. [정답] ②

함수 $f(x)=a\sin(ax)+3$ 의 주기가 $\frac{3\pi}{2}$ 이므로 $\frac{2\pi}{a}=\frac{3\pi}{2}\;,\;a=\frac{4}{3}\;$ 이다. 따라서 $-1\leq\sin(ax)\leq1$ 이므로

함수 f(x) 의 최댓값은 $\frac{4}{3} + 3 = \frac{13}{3}$ 이다.

9. [정답] ⑤

이차방정식 $x^2+(2\sin\theta)x+\cos\theta+\frac{5}{4}=0$ 의 판별식을 D라 하면 $\frac{D}{4}=(\sin\theta)^2-\cos\theta-\frac{5}{4}\geq 0 \text{ 에서}$ $1-\cos^2\theta-\cos\theta-\frac{5}{4}\geq 0 \text{ , } \left(\cos\theta+\frac{1}{2}\right)^2\leq 0$

즉, $\cos\theta=-\frac{1}{2}$ 이다. $0\leq\theta<2\pi$ 이므로 $\theta=\frac{2}{3}\pi$ 또는 $\theta=\frac{4}{3}\pi$ 이다.

따라서 모든 θ 의 값의 합은 $\frac{2}{3}\pi + \frac{4}{3}\pi = 2\pi$ 이다.

10. [정답] ③

입체도형을 평면 $x=t(1\leq t\leq 2)$ 로 자른 단면이 정삼각형이므로 단면의 넓이는

$$\frac{\sqrt{3}}{4} \times \left(\frac{1}{t}\right)^2 = \frac{\sqrt{3}}{4t^2}$$

따라서 이 입체도형의 부피는

$$\int_{1}^{2} \frac{\sqrt{3}}{4t^{2}} dt = -\frac{\sqrt{3}}{4} \left[\frac{1}{t} \right]_{1}^{2} = -\frac{\sqrt{3}}{4} \left(\frac{1}{2} - 1 \right) = \frac{\sqrt{3}}{8}$$
 이다.

11. [정답] ①

두 함수 $f(x)=2^x$, $g(x)=\log_2 x$ 는 서로 역함수이므로 직선 y=-x+k 와의 교점의 좌표는 직선 y=x 에 대하여 대칭이다. 즉, 두 함수 y=f(x), y=g(x) 와 직선 y=-x+k 와의 교점의 좌표는 각각 $(\alpha,\ \beta)$, $(\beta,\ \alpha)$ 이고, 두 교점의 중점은 두 직선 y=-x+k, y=x 와의 교점이다. 따라서 $\alpha+\beta=6$ 이므로 두 교점의 중점은 $\left(\frac{\alpha+\beta}{2},\ \frac{\alpha+\beta}{2}\right)=(3,\ 3)$ 이고, 3=-3+k 에서 k=6 이다.

12. [정답] ③

조건 (나)에 의하여 4의 양의 약수가 1, 2, 4이므로

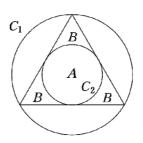
a=1 또는 a=2 또는 a=4이다. a=1인 경우, 조건 (가)에서 b+c+d=5이므로 $_3\mathrm{H}_5=_7\mathrm{C}_2=\frac{7\times 6}{2}=21$ 이다. a=2인 경우, b+c+d=4이므로 $_3\mathrm{H}_4=_6\mathrm{C}_2=\frac{6\times 5}{2}=15$ 이다. a=4인 경우, b+c+d=2이므로 $_3\mathrm{H}_2=_4\mathrm{C}_2=\frac{4\times 3}{2}=6$ 이다. 따라서 구하는 경우의 수는 21+15+6=42이다.

13. [정답] ④

조건에서 $f''(x_1)f''(x_2) < 0$ 이므로 $f''(x_1) > 0$ 이면 $f''(x_2) < 0$ 이고, $f''(x_1) < 0$ 이면 $f''(x_2) > 0$ 이다. 즉, f''(1) = 0 이다. $f(x) = \ln(x^2 + k)$ 에서 $f'(x) = \frac{2x}{x^2 + k}, \ f''(x) = \frac{2(k - x^2)}{(x^2 + k)^2}$ 이므로 f''(1) = k - 1 = 0 이다. 따라서 k = 1 이므로 $f(k) = \ln 2$ 이다.

14. [정답] ②

15. [정답] ⑤



다섯 가지의 색 중 두 영역 A, B에 색칠하는 경우의 수는 $_5\mathrm{P}_2=20$ 이고, 나머지 $_3$ 구역에 $_3$ 가지의 색으로 색칠하는 경우의 수는 $_3$ -1)!= $_2$ 이다. 따라서 구하는 경우의 수는 $_2$ 0× $_2$ = $_4$ 0이다.

16. [정답] ⑤

두 원 C_1 , C_2 의 접점을 R 라 하자. 삼각형 ABP는 직각삼각형이므로 $\overline{AB} = \sec\theta$, $\overline{BP} = \tan\theta$ 이다. 즉, $\overline{BR} = \overline{AB} - \overline{AR} = \sec\theta - 1$ 이고 $\overline{BQ} = \overline{BR}$ 이므로

삼각형 PBQ에서 피타고라스의 정리에 의하여 $\overline{PQ} = \sqrt{\overline{BP^2} - \overline{BQ}^2}$

$$= \sqrt{\tan^2\theta - (\sec\theta - 1)^2} = \sqrt{2\sec\theta - 2}$$

$$\begin{split} \therefore \lim_{\theta \to 0+} \frac{\overline{PQ}}{\theta} &= \lim_{\theta \to 0+} \frac{\sqrt{2 \sec \theta - 2}}{\theta} \\ &= \lim_{\theta \to 0+} \frac{\sqrt{2(1 - \cos \theta)}}{\theta \sqrt{\cos \theta}} \\ &= \lim_{\theta \to 0+} \frac{\sqrt{2} \sin \theta}{\theta \sqrt{\cos \theta(1 + \cos \theta)}} = 1 \end{split}$$

17. [정답] ④

두 점 B, C의 좌표는 각각 B $(2^n,\ n)$, C $(3^n,\ n)$ 이고 밑변을 $\overline{\mathrm{BC}}$ 로 하면 삼각형 ABC의 높이는 n이므로 넓이는 $S_1=\frac{1}{2}n(3^n-2^n)$ 이다.

두 점 D, E의 좌표는 두 점 B, C를 직선 y=x에 대하여 대칭이동한 점이므로 $D(n, 2^n)$, $E(n, 3^n)$ 이다.

같은 방법으로 삼각형 BDE의 높이는 2^n-n 이므로 넓이는 $S_2=\frac{1}{2}\big(2^n-n\big)\big(3^n-2^n\big)$ 이다.

$$2S_2 < 3S_1$$
이므로 $(2^n-n)(3^n-2^n) < \frac{3}{2}n(3^n-2^n)$

에서
$$2^n < \frac{5}{2}n$$
이다.

이를 만족하는 2 이상의 자연수 n의 값은 2이다. $\therefore \overline{\mathrm{BC}} = 3^n - 2^n = 9 - 4 = 5$

18. [정답] ③

$$\int_0^a \{\tan^3 x \times f'(\tan x)\} dx + \int_0^a \tan x \times f'(\tan x) dx$$
$$= \int_0^a \tan x (\tan^2 x + 1) \times f'(\tan x) dx$$
$$= \int_0^a \tan x (\sec^2 x) \times f'(\tan x) dx$$

에서 $\tan x = t$ 라 치환하면 $\sec^2 x = \frac{dt}{dx}$ 이고, x = 0 일 때 t = 0 , x = a 일 때 $t = \tan a = 3$ 이다.

$$\int_{0}^{a} \tan x (\sec^{2}x) \times f'(\tan x) dx$$
$$= \int_{0}^{3} tf'(t) dt$$

$$= \left[tf(t)\right]_0^3 - \int_0^3 f(t) \, dt$$

$$= 3f(3) - \int_0^3 f(t) dt = 3$$

에서 f(3)=3k이고

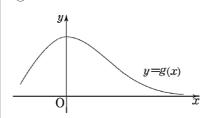
$$\begin{split} &\int_0^3 \! f(t) \, dt \! = \int_0^3 \! \left(t^3 - 3t^2 + kt \right) dt \! = \! \frac{9k}{2} \! - \! \frac{27}{4} \, \mathrm{ol} \, \square \, \Xi \\ &9k \! - \! \frac{9k}{2} \! + \! \frac{27}{4} \! = \! 3 \, , \; k \! = \! - \frac{5}{6} \, \mathrm{ol} \, \Box \, . \end{split}$$

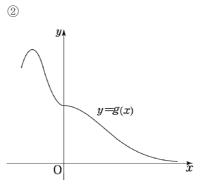
19. [정답] ①

함수 g(x) 가 실수 전체의 집합에서 미분가능하므로 연속이다. 즉, f(0)=1 이다. 또한, $x\geq 0$ 에서 $g'(x)=-2xe^{-x^2}$ 이고 x<0 에서 g'(x)=f'(x) 이므로 f'(0)=0 이다.

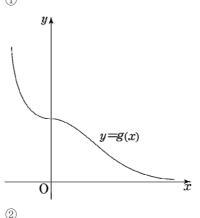
따라서 함수 y = g(x)의 그래프 개형은 삼차함수 y = f(x)의 그래프 개형에 따라 다음과 같다.

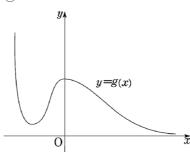
i) 함수 f(x)의 최고차항의 계수가 양수인 경우





 ii) 함수 f(x)의 최고차항의 계수가 음수인 경우





- ㄱ. i)의 경우이므로 함수 g(x)는 최댓값을 갖는다. \therefore (참)
- 니. 함수 g(x) 가 최솟값을 가지므로 ii)—②번이 가능하고, g(x) 의 최솟값은 함수 f(x) 의 극솟값이다. 따라서 x=k 에서 극솟값을 가져야한다. 이때, $\lim_{x\to\infty}g(x)=0$ 이므로 함수 g(x) 가 최솟값을 가지려면 $g(x)\leq 0$ 이어야 한다. \therefore (거짓)
- 다. x=-2 에서 최솟값을 가지므로 f'(-2)=0 이다. 따라서 f(x)의 최고차항의 계수를 a라 하면 f'(x)=3ax(x+2) 이다.

$$g''(x) = \begin{cases} 6a(x+1) & (x<0) \\ (4x^2-2)e^{-x^2} & (x>0) \end{cases}$$
 에서 함수 $g(x)$ 가 변곡점이 되는 x 좌표는 $x = \frac{1}{\sqrt{2}}$, $x = -1$ 이다.

함수 g(x) 의 변곡점의 y 좌표의 곱이 $\frac{1}{2}e^{-\frac{1}{2}}$ 이므로 $f(-1)\times e^{-\frac{1}{2}}=\frac{1}{2}e^{-\frac{1}{2}}$ 에서 $f(-1)=\frac{1}{2}$ 이다. 따라서 $f(x)=ax^3+3ax^2+1$ ($\because f(0)=1$)에서 $a=-\frac{1}{4}$ 이고, 함수 g(x)의 최솟값은 0이다. \therefore (거짓) 따라서 옳은 것은 ㄱ

1-1 1 10 1 71

20. [정답] ②

7 개의 점 중에서 3 개의 점을 선택할 때, 어떤 한 점이 선택되는 경우의 수는 15 이므로 7 개의 점 중에서 3 개의 점을 선택해서 3 개의 점에 대응되는 수를 모두 더한 값의 합은

$$(7) = 15 \times \sum_{k=1}^{7} k = 420$$

따라서 세 점 A, B, G 와 세 점 E, F, G 에 대응되는 수의 합을 각각 s_{n+1} , s_{n+2} 라 하면 $s_{n+1}+s_{n+2}=420-388=32$ 이다. $1\leq k\leq n+2$ 인 모든 자연수 k에 대하여 $s_k\leq 18$ 이므로 순서쌍 $\left(s_{n+1},\ s_{n+2}\right)$ 는 $\left(18,\ 14\right)$, $\left(17,\ 15\right)$, $\left(16,\ 16\right)$, $\left(15,\ 17\right)$, $\left(14,\ 18\right)$ 이 될 수 있다.

- i) $(s_{n+1},\ s_{n+2})$ = $(18,\ 14)$ 인 경우 $s_{n+1}=5+6+7$ 이고, 5, 6, 7 중 하나의 수와 나머지 중에서 두 수의 합이 14 가 되는 경우는 $s_{n+2}=3+4+7$ 뿐이다. 따라서 점 G에 대응되는 수는 7 이고 이를 만족시키도록 7 개의 점과 자연수를 대응시키는 모든 경우의 수는 $\boxed{(나)=2\times2\times2=8}$ 이다.
- ii) (s_{n+1}, s_{n+2}) = (17, 15) 인 경우 $s_{n+1} = 4+6+7$ 이고, 4, 6, 7 중 하나의 수와 나머지 중에서 두 수의 합이 15 인 경우는 $s_{n+2} = 3+5+7$ 뿐이다. 따라서 점 G 에 대응 되는 수는 7 이고, 이를 만족시키는 모든 경우 의 수는 $2\times2\times2=8$ 이다.
- iii) (s_{n+1}, s_{n+2}) = (16, 16) 인 경우 7 이하의 세 수의 합이 16 이 되는 경우는 3+6+7, 4+5+7 뿐이다. 따라서 점 G 에 대응되는 수는 7 이고, 이를 만족시키는 모든 경우의 수는 $2\times2\times2\times2=16$ 이다.
- iv) (s_{n+1}, s_{n+2})=(14, 18), (15, 17) 인 경우
 i), ii)에 의하여 각각의 경우의 수는 모두 8 이다.

따라서 구하고자 하는 모든 경우의 수는 (다)=8+8+16+8+8=48 이다.

즉, a = 420, b = 8, c = 48이므로 $\frac{a \times b}{c} = \frac{420 \times 8}{48} = 70 \text{ or}.$

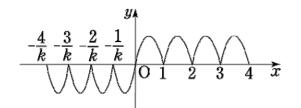
21. [정답] ④

다음과 같다.

조건 (가)에 의하여 $x \ge 0$ 에서 $f(x) = \pi |\sin \pi x|$ 이다. 조건 (나)에서 $-\frac{x}{k} = t$ 라 하면

 $f(t) = -f(kt) (t \le 0)$

즉, $f(t) = -\pi |\sin(-k\pi t)| = -\pi |\sin(k\pi t)|$ 이므로 $x \le 0$ 에서 $f(x) = -\pi |\sin(k\pi x)|$ 이다. 이를 바탕으로 함수 y = f(x) 의 그래프 개형은



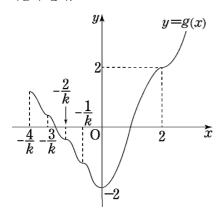
$$g(x) = \int_{1}^{x} f(t)dt$$
라 하자.

$$\int_0^1 \pi \sin(\pi x) dx = 2$$
이므로
$$\int_{-\frac{1}{k}}^0 f(t) dt = -\frac{2}{k}$$
이고,

$$g(1)=0$$
, $g(2)=\int_{1}^{2}-\pi\sin(\pi x) dx=2$,

$$g(0) = \int_{0}^{1} \pi \sin(\pi x) dx = -2 \circ |\mathcal{F}|.$$

g'(x)=f(x) 이므로 함수 y=g(x) 의 그래프 개형은 다음과 같다.



함수 $y=\left|\int_{1}^{x}f(t)\,dt+\frac{3}{4}\right|$ 가 한 점에서만 미분가능하지 않으려면 x<0에서 직선 $y=-\frac{3}{4}$ 가 함수 g(x)의 변곡점을 지나야 한다. x<0에서 함수 g(x)는 $x=-\frac{1}{k}$, $-\frac{2}{k}$, \cdots 에서 변곡점을 가지므로 직선 $y=-\frac{3}{4}$ 가 지나는 변곡점의

즉, 함수 $g(x)=-\frac{3}{4}$ 의 교점의 개수가 2 개이므로

$$x$$
 좌표를 $-\frac{n}{k}$ (n은 자연수)라 하면
$$g\left(-\frac{n+1}{k}\right) = g\left(-\frac{n}{k}\right) + \frac{2}{k}$$
 이므로

$$-2 + \frac{2n}{k} = -\frac{3}{4}, \ k = \frac{8}{5}n \text{ or}.$$

따라서 2 < k < 4 이므로 이를 만족하는 k 의 값은 n=2 일 때 $k=\frac{16}{5}$ 이다.

22. [정답] 6

 $\tan^2\theta = \sec^2\theta - 1$ 이므로 $\sec^2\theta + \sec^2\theta - 1 = 4 \text{ 에서 } \sec^2\theta = \frac{5}{2} \text{ 이다.}$ 즉, $\cos^2\theta = \frac{2}{5}$ 이고, $\sin^2\theta + \cos^2\theta = 1$ 이므로

$$\sin^2\theta = \frac{3}{5} \text{ or}.$$

$$\therefore 10\sin^2\theta = 10 \times \frac{3}{5} = 6$$

23. [정답] 75

$$y=\sqrt{x^2+3}$$
 에서 $y'=\frac{x}{\sqrt{x^2+3}}$ 이므로
곡선 위의 점 $(1,\ 2)$ 에서의 접선의 기울기는
$$\frac{1}{\sqrt{1+3}}=\frac{1}{2}\ \text{이고},\ \mathrm{접선의}\ \mathrm{방정식e}$$

$$y=\frac{1}{2}(x-1)+2=\frac{1}{2}x+\frac{3}{2}\ \mathrm{이다}.$$
 따라서 $a=\frac{1}{2}$, $b=\frac{3}{2}$ 이므로 $100ab=75\ \mathrm{이다}.$

24. [정답] 50

다항식 $\left(ax^2+\frac{1}{x}\right)^5$ 의 일반항은 ${}_5\mathrm{C}_r(ax^2)^r\left(\frac{1}{x}\right)^{5-r}}={}_5\mathrm{C}_ra^rx^{3r-5}(r=0,\ 1,\ 2,\ \cdots,\ 5)$ 이다. 즉, x 항은 r=2일 때이므로 x의 계수는 ${}_5\mathrm{C}_2a^2=10a^2$ 이고, $\frac{1}{x^2}$ 항은 r=1일 때이므로 $\frac{1}{x^2}$ 의 계수는 ${}_5\mathrm{C}_1a=5a$ 이다.

따라서 $10a^2=5a$, 5a(2a-1)=0 에서 a>0 이므로 $a=\frac{1}{2}$ 이다.

$100a = 100 \times \frac{1}{2} = 50$

25. [정답] 36

두 곡선 $y=\ln(x+1)$, y=-x+e 과 x 축으로 둘러싸인 부분의 넓이는

둘러싸인 부분의 넓이는
$$\int_0^{e-1} \ln(x+1) \, dx + \int_{e-1}^e (-x+e) \, dx$$
이다.
$$\int_0^{e-1} \ln(x+1) \, dx = \int_1^e \ln x \, dx = [x \ln x]_1^e - [x]_1^e = 1$$
이고,
$$\int_{e-1}^e (-x+e) \, dx$$
는 한 변의 길이가 1 인 직각이등변삼각형의 넓이이므로 $\frac{1}{2}$ 이다.

즉,
$$k=1+\frac{1}{2}=\frac{3}{2}$$
 이다.

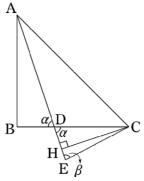
$$\therefore 24k = 24 \times \frac{3}{2} = 36$$

26. [정답] 5

점 A 의 y 좌표가 k 이므로 x 좌표는 $4^{-x}+2=k$ 에서 $4^{-x}=k-2$, $x=-\log_4(k-2)$ 이다. 같은 방법으로 점 B 의 x 좌표는 $\log_2 k$ 이고, 선분 AB 를 1:2로 내분하는 점의 x 좌표가 $\frac{1}{3}$ 이므로 $\frac{-2\log_4(k-2)+\log_2 k}{1+2}=\frac{1}{3}$, $\log_2\frac{k}{k-2}=1$ 이다. 즉, $\frac{k}{k-2}=2$ 에서 k=4 이므로 선분 AB 의 길이는 $\log_2 k+\log_4(k-2)=\frac{5}{2}$ 이다.

따라서 삼각형 OAB의 높이는 4이므로 넓이는 $\overline{AB} \times 4 \times \frac{1}{2} = 5$ 이다.

27. [정답] 22



삼각형 ACD의 넓이가 3이고, 삼각형 ABC의 넓이는 $\frac{9}{2}$ 이므로

삼각형 ABD의 넓이는 $\frac{3}{2}$ 이다.

즉, 점 D 는 선분 BC를 1:2로 내분하는 점이다. 점 C 에서 선분 AE 에 내린 수선의 발을 H 라 하자. 삼각형 ABD는 직각삼각형이므로 $\overline{AD} = \sqrt{10}$ 이고,

$$\sin \alpha = \frac{3}{\sqrt{10}}$$
 이므로 삼각형 CDH에서

$$\sin \alpha = \frac{\overline{CH}}{\overline{CD}} = \frac{\overline{CH}}{2}$$
이므로

$$\overline{CH} = 2 \times \sin \alpha = \frac{6}{\sqrt{10}} \circ |\tau|.$$

또한, 삼각형 CDE의 넓이는

$$\frac{1}{2} \times \overline{\mathrm{DE}} \times \overline{\mathrm{CH}} = \frac{9}{10}$$
 이므로 $\overline{\mathrm{DE}} = \frac{3}{\sqrt{10}}$ 이고,

$$\overline{\rm DH} = 2\cos\alpha = \frac{2}{\sqrt{10}}$$
 이므로 $\overline{\rm HE} = \frac{1}{\sqrt{10}}$ 이다.

즉, $\tan \alpha = 3$ 이고 삼각형 CEH에서

$$\tan \beta = \frac{\overline{CH}}{\overline{HE}} = 6$$
이다.

$$\therefore \tan(\beta-\alpha) = \frac{\tan\beta - \tan\alpha}{1 + \tan\alpha\tan\beta} = \frac{6-3}{1+3\cdot 6} = \frac{3}{19}$$
 따라서 $p=19$, $q=3$ 이므로 $p+q=19+3=22$ 이다.

28. [정답] 45

$$h(x) = \int_0^x g(t) dt$$
라 하면 $h(0) = 0$ 이고

조건에서 $f(3)=e^3$ 이므로

조건 (7)의 양변에 x=3을 대입하면

 $f(3) = e^3 h(3) - 2e^3$, h(3) = 3이다.

또한, h'(x)=g(x)이고

조건 (가)에서 $f(x) = e^x h(x) - 2e^3$ 의 양변을 미분하면

 $f'(x) = e^x(g(x) + h(x))$ 이고,

조건 (나)에서 $e^{-x}f'(x)g(x)=x^2$ 이므로

양변에 $e^{-x}g(x)$ 를 곱하면

 $e^{-x}f'(x)g(x) = \{g(x)\}^2 + g(x)h(x),$

 $x^{2}-g(x)h(x)=\{g(x)\}^{2}$ or.

양변을 x=0에서 x=3까지 적분하면

$$\begin{split} &\int_0^3 x^2 dx - \int_0^3 g(x) h(x) \, dx = \int_0^3 \{g(x)\}^2 dx \ , \\ &\int_0^3 g(x) h(x) \, dx = \int_0^3 x^2 dx - \int_0^3 \{g(x)\}^2 dx \ \mathrm{or}. \end{split}$$

$$\int_0^3 g(x)h(x)\,dx = \left[\{h(x)\}^2\right]_0^3 - \int_0^3 h(x)g(x)\,dx$$
이므로

$$\int_{0}^{3} g(x)h(x) dx = \frac{1}{2} \left[\{h(x)\}^{2} \right]_{0}^{3}$$
ਂਸ.

$$= \frac{1}{2} \left[\{ h(3) \}^2 - \{ h(0) \}^2 \right]$$

$$= \left[\frac{1}{3}x^3\right]_0^3 - \int_0^3 \{g(x)\}^2 dx \,,$$

$$\frac{9}{2} = 9 - \int_{0}^{3} \{g(x)\}^{2} dx$$
 이므로

$$k = \int_{0}^{3} \{g(x)\}^{2} dx = \frac{9}{2}$$
 이다.

$$\therefore 10k = 10 \times \frac{9}{2} = 45$$

29. [정답] 399

같은 층에서 서로 이웃한 두 공에 적혀 있는 수의 곱이 짝수가 되려면 1 이 적혀 있는 공끼리는 이웃하지 않아야 한다.

즉, 각 층에 1 이 적혀 있는 공의 개수에 따라 다음과 같이 나눌 수 있다.

- i) 각 층에 1 이 적혀 있는 공이 3개, 3개, 0개 있는 경우
 - 한 층에 1 이 적혀 있는 공이 3 개이려면
 1, 2, 1, 2, 1 의 순서로 나열되어야 한다.
 즉, 각 층에 공을 넣는 모든 경우의 수는 1 이고,
 1 이 들어가는 층을 선택하는 경우의 수는
- $_3$ C $_2$ = 3 이므로 1×3 = 3 이다. ii) 각 층에 1 이 적혀 있는 공이 3 개, 2 개, 1 개 있는

한 층에 1 이 적혀 있는 공을 2 개 넣는 경우의 수는 1이 적혀 있는 공은 서로 이웃하지 않아야 하므로 $\frac{5!}{3!2!}-4=6$ 이다.

한 층에 1 이 적혀 있는 공을 1 개 넣는 경우의 수는 5 이므로 $1 \times 6 \times 5 \times 3! = 180$ 이다.

- iii) 각 층에 1 이 적혀 있는 공이 2개, 2개, 2개 있는 경우
 - ii)에서 한 층에 1 이 적혀 있는 공을 2 개 넣는 경우의 수는 6 이므로 $6 \times 6 \times 6 = 216$ 이다.
- i), ii), iii)에 의하여 구하는 경우의 수는 3+180+216=399이다.

30. [정답] 180

함수 $h(x) = (g \circ f)(x)$ 에 대하여 h'(x) = g'(f(x))f'(x) 이다.

함수 h(x) 가 극대 또는 극소가 되려면 h'(x)=0 에서 g'(f(x))=0 또는 f'(x)=0 이어야 한다. 함수 g(x)는 최고차항의 계수가 1이고,

 $x = \frac{2}{3}$ 에서 극솟값을 가지므로

g'(x)=0의 다른 한 근을 α 라 하면

 α 에서 극댓값을 가지므로 $\alpha < \frac{2}{3}$ 이다.

함수 $f(x) = p \sin\left(\frac{\pi}{2}x\right) + q(p > 0)$ 에 대하여

 $f'(x) = \frac{\pi}{2} p \cos\left(\frac{\pi}{2}x\right) \text{ or } .$

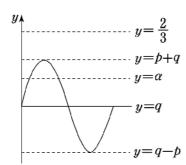
조건 (가)에서 $a_2-a_1 < a_4-a_3$ 이고, f'(x)=0이 되는 x의 값은

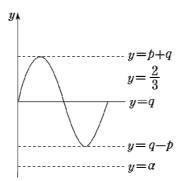
 $x=1, 3, 5, 7, \cdots$ 이므로 g'(f(x))=0 의 값에 따라 조건 (7)를 만족시킬 수 있다.

g'(f(x))=0이 되려면 $f(x)=\alpha$ 또는 $f(x)=\frac{2}{3}$ 이고,

 $-p+q \le f(x) \le p+q$ 이므로 $h'(x)=0 \ \ \,$ 만족하는 x 의 개수는 다음 조건에 따라 나눌 수 있다.

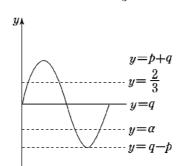
i) $q < \alpha < p + q$ 또는 $q < \frac{2}{3} < p + q$ 인 경우





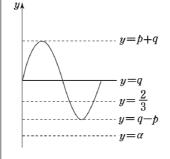
그림과 같이 q와 p+q 사이에서만 만날 경우 $a_1=1$, $a_2=3$, $a_3=3$, $a_4=4$ 이므로 조건 (7)를 만족시키지 못한다.

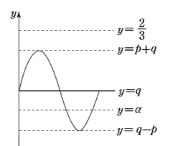
ii)
$$-p+q < \alpha < q < \frac{2}{3} < p+q$$
인 경우



그림과 같이 서로 다른 네 점에서 만나는 경우 $a_1=1$, $a_2=3$, $a_3=4$, $a_4=6$ 으로 조건 (7)를 만족시키지 못한다.

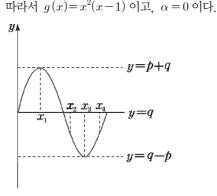
iii)
$$-p+q<\frac{2}{3}< q$$
 또는 $-p+q<\alpha< q$ 인 경우





그림과 같이 -p+q와 q 사이에서만 만날 경우 $a_1=0$, $a_2=1$, $a_3=2$, $a_4=4$ 이므로 조거 (7^1) 를 만족시키다

조건 (가)를 만족시킨다. i), ii), iii)에 의하여 $a_1=0\ ,\ a_2=1\ ,\ a_3=2\ ,\ a_4=4\ \text{이고},$ 조건 (나)에 의하여 $g(0)=0\ ,\ g(1)=0\ \text{이다}.$ 즉, $g(x)=x(x-1)(x-k)\ (k는 상수)라$ 하면 $g'(x)=3x^2-2(k+1)x+k\ \text{이고},$ $g'\left(\frac{2}{3}\right)=0\ \text{이므로}\ \frac{4}{3}-\frac{4}{3}(k+1)+k=0\ ,\ k=0\ \text{이다}.$



함수 h(x) 가 극댓값 0, 4를 가지고 그림에서 $\lim_{x \to x_1^-} g'(f(x))$ 의 부호와

 $\lim_{x \to x_1^+} g'(f(x))$ 의 부호는 같고,

 $\lim_{x \to x_1^-} f'(x) > 0$, $\lim_{x \to x_1^+} f'(x) < 0$ 이므로

 $\lim_{x \to x_1^-} h'(x) = \lim_{x \to x_1^-} g'(f(x))f'(x) > 0,$

 $\lim_{x \to x_1 +} h'(x) = \lim_{x \to x_1 +} g'(f(x))f'(x) < 0 \text{ or}.$

즉, 함수 h(x)는 $x = x_1$ 에서부터 차례대로 극댓값과 극솟값을 갖는다.

따라서 $h(x_1)=h(1)=4$, $h(x_3)=h(3)=0$ 이므로 g(p+q)=4, g(-p+q)=0이다.

즉, $g(-p+q)=(-p+q)^2(-p+q-1)=0$ 에서 p=q 또는 q-p=1 이다.

이때, q-p=1 이면 $q-p<\frac{2}{3}$ 인 조건에 모순이다. 따라서 p=q이고, $(p+q)^2(p+q-1)=4$ 에서 $(2p)^2(2p-1)=4$, $2p^3-p^2-1=0$, p=q=1이다. $\therefore g(5p+q)=g(6)=36\times 5=180$