

삼각함수의 공식을 적절히 활용하라. (주로 각, 함수의 통일) ■■■

Critical Point 05		easy	difficult
문제		구간 $[0,\pi]$ 에서 함수 $f(x) = \cos 2x + 2\sin x \cos x$ 의 그래프가 직선 $y=a$ 와 세 점에서 만날 때, a 의 값은? $[2005.9]$	두 함수 $f(x)=\frac{1}{x+2}$, $g(x)=\sqrt{3}\sin x-\cos x$ 에 대하여 폐구간 $[0,\pi]$ 에서 함수 $y=(f\circ g)(x)$ 의 최댓값은? [2007.6]
풀이의 공통성	삼각함수의 공식을 활용하여 식을 정리하라.	배각공식을 활용해서 각을 통일하면 $\cos 2x + \sin 2x$ 삼각함수의 합성을 활용하면 $\sqrt{2} \sin \left(2x + \frac{\pi}{4}\right)$	삼각함수의 합성을 활용하면 $g(x)=\sqrt{3}\sin x-\cos x=2\sin \left(x-\frac{\pi}{6}\right)$ 이다.
	나머지 풀이	이후 그래프를 활용해서 해결하면 된다. [분석 및 해제] 참조	$[0,\pi]$ 에서 $-1 \le 2\sin\left(x-\frac{\pi}{6}\right) \le 2$ 이므로 $g(x)=2\sin\left(x-\frac{\pi}{6}\right)=t$ 라 하면 $y=(f\circ g)(x)=f(t)=\frac{1}{t+2}$ 이므로 분수함수의 그래프로 문제를 해결하면 된다.
차이점과 관련 심화특강		1. 배각공식과 합성을 활용해서 정리할 수 있다. 2. $\sqrt{2}\sin\left(2x+\frac{\pi}{4}\right)$ 을 단위원 위의 y 좌표로 해석하는 풀이도 가능하다. [심화특강12: 삼각함수의 좌표해석]	1. 합성을 활용해서 정리할 수 있다. 2. 벡터의 내적을 활용해서 더 빠르게 닫힌 구 간 $[0,\pi]$ 에서 $g(x)$ 의 범위를 찾을 수 있다. [심화특강11: 삼각함수의 합성]
풀이의 공통성을 확인해야하는 문제 (동일 CP 문항)		04, 05, 06, 07, 09	

저자의 3

1. 삼각함수의 공식은 반드시 외우도록 하자, 특히 덧셈정리, 배각공식, 합성이 압도적으로 많이 출제된다.

사인법칙, 코사인법칙 등 고등학교 1학년 공식을 활용하라.

Critical Point 05, 06		easy	difficult
		그림과 같이 중심이 O 이고 반지름의 길이가 1 인 원 위의 서로 다른 두 점 P , Q 에 대하여 $\angle POQ$ 를 이등분하는 직선이 호 PQ 와 만나는 점을 R 라 하자. 삼각형 POQ 의 넓이와 삼각형 ROQ 의 넓이의 비가 $3:2$ 이고 $\angle ROQ = \theta$ 라 할 때, $16\cos\theta$ 의 값을 구하시오. $[2007.6]$	평면에 있는 사각형 $ABCD$ 가 $\overline{AB} = \overline{AD} = 1, \ \overline{BC} = \overline{CD} = \overline{DB}$ 를 만족시킨다. $\angle DAB = \theta$ 라 할 때, 사각형 $ABCD$ 의 넓이가 최대가 되도록 하는 θ 에 대하여 $60\sin^2\theta$ 의 값을 구하시오.
	문제	Q P R Q	D θ B
풀이의 공통성	고등학교 1학년 공식을 활용하여 식을 세워라.	삼각형의 넓이 공식을 활용하면 $\Delta \textit{OQR} = \frac{1}{2} \sin \theta , \ \Delta \textit{OPR} = \frac{1}{2} \sin 2\theta$	삼각형의 넓이 공식을 활용하면 $ \Delta ABD = \frac{1}{2} \sin\theta \text{이고} $ 코사인 법칙을 활용하면 $\overline{BD}^2 = 2 - 2\cos\theta$ 정삼각형의 넓이 공식을 활용하면 $ \Delta CDB = \frac{\sqrt{3}}{4} (2 - 2\cos\theta) $ 이므로 $ \Delta ABD + \Delta CDB = \frac{1}{2} \sin\theta - \frac{\sqrt{3}}{2} \cos\theta + \frac{\sqrt{3}}{2} \text{이다.} $
	삼각함수의 공식을 활용하여 식을 정리하라.	넓이비가 $3:2$ 이므로 $3 \times \frac{1}{2} \sin\theta = 2 \times \frac{1}{2} \sin2\theta$ 정리하면 $3\sin\theta = 4\sin\theta\cos\theta$, $\sin\theta(3-4\cos\theta)=0$	삼각함수의 합성을 활용하면 $\frac{1}{2}\sin\theta - \frac{\sqrt{3}}{2}\cos\theta + \frac{\sqrt{3}}{2}$ $= \sin\left(\theta - \frac{\pi}{3}\right) + \frac{\sqrt{3}}{2}$
차이점과 관련 심화특강		1. 고등학교 1학년 공식인 삼각형의 넓이 공식 이 활용된다.	 고등학교 1학년 공식인 삼각형의 넓이 공식, 코사인 법칙, 정삼각형의 넓이가 활용된다. 최대가 되는 θ를 물으므로 최대가 될 때, tanθ = 사인계수 코사인계수 임을 활용하면 합성없이 매우 빠르게 해결할 수 있다. [심화특강11: 삼각함수의 합성]
풀이의 공통성을 확인해야하는 문제 (동일 CP 문항)		01, 02, 03, 08, 10, 11, 12	

저자의 조언

- 1. 삼각함수 단원의 경우 고등학교 1학년 수학의 다양한 공식과 연계된다.
- 2. $an heta=rac{\text{사인계수}}{\text{코사인계수}}$ 일 때, $a\sin heta+b\cos heta$ 이 최대, 혹은 최소가 되는 것은 자주 활용된다.