패턴35

벡터의 다양한 해법

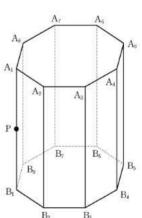
편집:우에노리에

1. 2004 교육청(3점)

세 벡터 $\stackrel{\rightarrow}{a}=(2,3)$, $\stackrel{\rightarrow}{b}=(x,-1)$, $\stackrel{\rightarrow}{c}=(-4,y)$ 에 대하여 $2\stackrel{\rightarrow}{a}-\stackrel{\rightarrow}{b}=\stackrel{\rightarrow}{b}+\stackrel{\rightarrow}{c}$ 가 성립할 때, 두 실수 x,y의 곱을 구하시오.

2. 2009 평가원(3점)

다음 그림은 밑면이 정팔각형인 팔각기둥이다. $\overline{A_1}\overline{A_3}=3\sqrt{2}$ 이고, 점 A_1 P가 모서리 A_1B_1 의 중점일 때, 벡터 $\sum_{i=1}^{8}(\overrightarrow{PA_i}+\overrightarrow{PB_i})$ 의 크기를 구 하시오.



3. 2007 교육청(3점)

세 점 O, A, B 에 대하여 두 벡터 $\stackrel{\rightarrow}{a} = \stackrel{\longrightarrow}{OA}, \stackrel{\rightarrow}{b} = \stackrel{\longrightarrow}{OB}$ 가 다음 조건을 만족시킨다.

$$(7) \overrightarrow{a} \cdot \overrightarrow{b} = 2$$

(나)
$$\mid \overrightarrow{a} \mid = 2, \mid \overrightarrow{b} \mid = 3$$

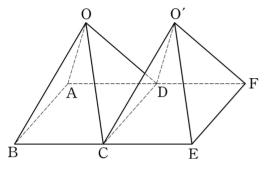
이때, 두 선분OA,OB 를 두 변으로 하는 평행사변형의 넓이는?

- ① $3\sqrt{2}$
- ② $4\sqrt{2}$
- (3) $3\sqrt{3}$

- $4\sqrt{3}$
- ⑤ $5\sqrt{3}$

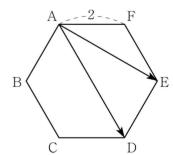
4. 2006 평가원(3점)

그림은 모든 모서리의 길이가 2인 두 개의 정사각뿔 O-ABCD, O'-DCEF에 대하여 모서리 CD를 일치시킨 도형을 나타낸 것이다. $|OB+OF|^2$ 의 값을 구하시오. (단, 면 ABCD와 면 DCEF는 한 평면 위에 있다.)



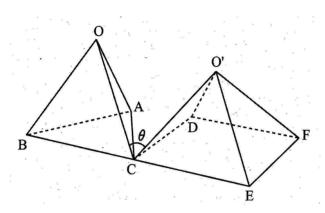
5. 2009 교육청(3점)

그림과 같이 한 변의 길이가 2인 정육각형 ABCDEF 가 있다. 두 벡터 \overrightarrow{AD} , \overrightarrow{AE} 의 내적 \overrightarrow{AD} • \overrightarrow{AE} 의 값을 구하시오.



2008 교육청(3점)

모든 모서리의 길이가 2인 정사면체 OABC 와 정사각뿔 O'-DCEF를 아래 그림과 같이 두 모서리 BC 와 CE 가 한 직선 위에 오도록 나란히 붙여 놓았다고 하자. 두 벡터 \overrightarrow{OC} 와 $\overrightarrow{OC'}$ 가 이루는 각의 크기를 θ 라 할 때, $\cos\theta$ 의 값은?(단, 삼각형 ABC 와 사각형 DCEF 는 한 평면 위에 있다.)

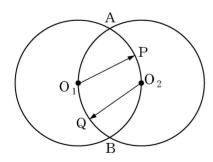


- ① $\frac{\sqrt{3}}{12} \frac{1}{4}$ ② $\frac{\sqrt{3}}{4} \frac{1}{2}$ ③ $\frac{5}{12}\sqrt{3} \frac{1}{4}$
- $\textcircled{4} \quad \frac{7}{12}\sqrt{3} \frac{1}{2} \qquad \textcircled{5} \quad \frac{3}{4}\sqrt{3} \frac{1}{4}$

7 2008 평가원(3점)

평면 위의 두 점 O_1 , O_2 사이의 거리가 1일 때, O_1 , O_2 를 각각 중심으로 하고 반지름의 길 이가 1인 두 원의 교점을 A,

B라 하자. 호 AO_2B 위의 점 P와 호 AO_1B 위의 점 Q에 대하여 두 벡터 O_1P , O_2Q 의 내적 $O_1P \cdot O_2Q$ 의 최댓값을 M, 최솟값을 m이라 할 때, M+m의 값은?

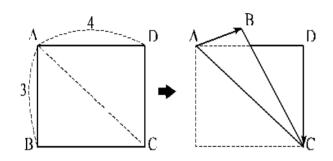


- ① -1
- $\bigcirc -\frac{1}{2}$
- 3 0

- $4) \frac{1}{4}$
- ⑤ 1

8. 2004 교육청(4점)

 $\overrightarrow{AD}=4$, $\overrightarrow{AB}=3$ 인 직사각형 모양의 종이 \overrightarrow{ABCD} 가 있다. 대각선 \overrightarrow{AC} 를 접는 선으로 하여 평면 \overrightarrow{ABC} 가 평면 \overrightarrow{ACD} 와 수직이 되게 접는다. 접은 도형에서 내적 $\overrightarrow{AB} \cdot \overrightarrow{DC} = \frac{b}{a}$ (a, b)는 서로소인 자연수)일 때, a+b의 값을 구하시오.

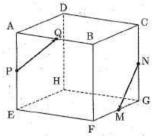


9. 2009 교육청(3점)

그림과 같이 한 변의 길이가 $\sqrt{6}$ 인 정육면체 ABCD-EFGH가 있다. 모서리 AE, AB, FG, CG의 중점을 각각 P, Q, M, N이라 하자.

$$\left| \overrightarrow{PQ} + \frac{1}{2} \overrightarrow{NM} \right| = \frac{b}{a}$$

일 때, $a^2 + b^2$ 의 값을 구하시오. (단, a, b 는 서로소인 자연수이다.)

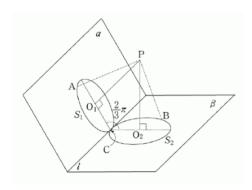


10. 2010 교육청(4점)

두 점 $A(2,\ 0),\ B(0,\ 1)$ 와 타원 $\frac{x^2}{4}+y^2=1$ 위를 움직이는 점 P에 대하여, \overrightarrow{AB} • \overrightarrow{AP} 가 최대가 되는 점 P에서의 접선의 방정식은 y=ax+b이다. a^2+b^2 의 값을 구하시오

11 2005 평가원(4점)

두 평면 $lpha\,,\,\,eta$ 의 교선을 l 이라 하자. 평면 lpha 위에 있는 원 $S_{\!1}$ 과 평면 eta 위에 있는 원 $S_{\!2}$ 는 반지름의 길이가 모두 2이다. 그림과 같이 원 S_1 과 원 S_2 는 점C에서 직선l과 접한다. S_1 의 중심 O_1 을 지나고 평면 lpha 에 수직인 직선과 S_2 의 중심 O_2 를 지나고 평면 eta 에 수직 인 직선이 만나는 점을 P라 하자. $\angle O_1CO_2=rac{2}{3}\pi$ 일 때, S_1 위에 있는 임의의 점 A와 S_2 위에 있는 임의의 점B에 대하여 $|\overrightarrow{PA} + \overrightarrow{PB}|$ 의 최댓값을M, 최솟값을m이라 하자. M+m의 값을 구하시오.



12. **2012** 평가원(3점)

좌표공간에서 네 점 A_0 , A_1 , A_2 , A_3 이 다음 조건을 만족시킨다.

$$(7) |\overrightarrow{A_0 A_2}| = |\overrightarrow{A_1 A_3}| = 2$$

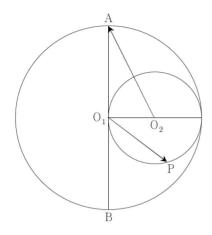
$$(1) 1 \xrightarrow{A_1 A_2} |\overrightarrow{A_1 A_3}| = 1 \xrightarrow{A_1 A_2} |\overrightarrow{A_1 A_3}| = 2$$

(나)
$$\frac{1}{2} \overrightarrow{A_0 A_3} \cdot \left(\overrightarrow{A_0 A_k} - \frac{1}{2} \overrightarrow{A_0 A_3} \right) = \cos \frac{3-k}{3} \pi \quad (k=1, 2, 3)$$

 $|\overrightarrow{A_1A_2}|$ 의 최댓값을 M이라 할 때, M^2 의 값을 구하시오.

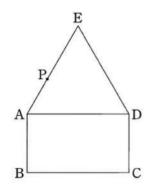
13. **2011** 교육청(4점)

그림과 같이 두 점 O_1 , O_2 를 중심으로 하는 반지름의 길이가 각각 2, 1 인 두 원이 내접하고, 큰 원의 지름 AB와 선분 O_1O_2 가 수직이다. 점 P가 작은 원 위를 움직일 때, 두 벡터 $\overrightarrow{O_1P}$, $\overrightarrow{O_2A}$ 의 내적 $\overrightarrow{O_1P}$ · $\overrightarrow{O_2A}$ 의 최댓값 M에 대하여 $12(M+1)^2$ 의 값을 구하시오.



14.2010평가원(4점)

평면에서 그림과 같이 $\overline{AB}=1$ 이고 $\overline{BC}=\sqrt{3}$ 인 직사각형 ABCD와 정삼각형 EAD 가 있다. 점 P가 선분 AE 위를 움직일 때, 옳은 것만을 <보기>에서 있는 대로 고른 것은?



----[보 기]-

- ㄱ. $|\overrightarrow{CB} \overrightarrow{CP}|$ 의 최솟값은 1이다.
- ㄴ. $\overrightarrow{CA} \cdot \overrightarrow{CP}$ 의 값은 일정하다.
- ㄷ. $\left|\overrightarrow{DA} + \overrightarrow{CP}\right|$ 의 최솟값은 $\frac{7}{2}$ 이다.
- \bigcirc
- ② **二**
- ③ ७, ∟

- 4 L, E
- ⑤ 7, ∟, ⊏

15 2006 수능 (3점)

타원 $\frac{x^2}{4} + y^2 = 1$ 의 두 초점을 F, F'이라 하자. 이 타원 위의 점 P가 $|\overrightarrow{OP} + \overrightarrow{OF}| = 1$ 을 만 족시킬 때, 선분 PF의 길이는 k이다. 5k의 값을 구하시오. (단, O는 원점이다.)

16 2012 수능 (3점)

삼각형 ABC 에서 $\overrightarrow{AB}=2$, $\angle B=90^\circ$, $\angle C=30^\circ$ 이다. 점 \overrightarrow{P} 가 $\overrightarrow{PB}+\overrightarrow{PC}=0$ 를 만족시 킬 때, $|\overrightarrow{PA}|^2$ 의 값은?

 \bigcirc 5

2 6

③ 7

4) 85) 9

17. 2006 수능 (3점)

좌표평면 위에 원점 O를 시점으로 하는 서로 다른 임의의 두 벡터 \overline{OP} , \overline{OQ} 가 있다. 두 벡터의 종점 P, Q를 x축 방향으로 3만큼, y축 방향으로 1만큼 평행이동 시킨 점을 각각 P', Q'이라 할 때, 다음 중 항상 옳은 것을 모두 고른 것은?

$$\neg. |\overrightarrow{\mathsf{OP}} - \overrightarrow{\mathsf{OP}}'| = \sqrt{10}$$

$$\Box$$
. $\overrightarrow{OP} \cdot \overrightarrow{OQ} = \overrightarrow{OP'} \cdot \overrightarrow{OQ'}$

① ¬

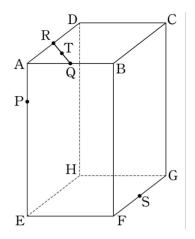
② ㄷ

③ ┐, ∟

④ ∟, ⊏⑤ ¬, ∟, ⊏

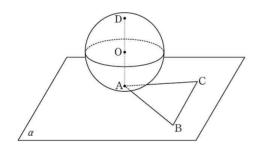
18. 2008 수능 (3점)

그림과 같이 $\overline{AB} = \overline{AD} = 4$, $\overline{AE} = 8$ 인 직육면체 ABCD-EFGH에서 모서리 AE를 1:3으로 내분하는 점을 P, 모서리 AB, AD, FG의 중점을 각각 Q, R, S라 하자. 선분 QR의 중점을 T라 할 때, 벡터 \overline{TP} 와 벡터 QS의 내적 \overline{TP} QS의 값을 구하시오.



19. 2006 수능 (4점)

그림과 같이 평면 α 위에 한 변의 길이가 3인 정삼각형 ABC가 있고, 반지름의 길이가 2인 구 S는 점 A에서 평면 α 에 접한다. 구 S 위의 점 D에 대하여 선분 AD가 구 S의 중심 O를 지날 때, $|\overrightarrow{AB} + \overrightarrow{DC}|^2$ 의 값을 구하시오.



20 2007 수능 (4점)

좌표공간에서 중심이 C인 구 $(x-1)^2 + (y-1)^2 + (z-1)^2 = 9$ 와 평면 x+y+z=6이 만나서 생기는 도형을 S라 하자. 도형 S 위의 두 점 P, Q에 대하여 두 벡터 \overrightarrow{CP} , \overrightarrow{CQ} 의 내적 \overrightarrow{CP} \overrightarrow{CQ} 의 최솟값은?

- (1) -3
- $\bigcirc 2 2$

- 4 1
- (5) 2

21 **2005** 수능 (4점)

좌표공간에 두 점 A(3, 1, 1), B(1, -3, -1)이 있다.

평면 x-y+z=0에 있는 점 P에 대하여 $|\overrightarrow{PA}+\overrightarrow{PB}|$ 의 최솟값은?

- $3 2\sqrt{3}$

2007 수능 (4점)

좌표공간에 네 점 A(2,0,0), B(0,1,0), C(-3,0,0), D(0,0,2)를 꼭지점으로 하는 사면 체 ABCD가 있다.

모서리 BD 위를 움직이는 점 P에 대하여 $\overline{PA}^2 + \overline{PC}^2$ 의 값을 최소로 하는 점 P의 좌표를 (a,b,c)라고 할 때, $a+b+c=rac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p, q는 서로소인 자연 수이다.)

23. 2006 수능 (4점)

좌표공간의 점 A(3, 6, 0)에서 평면 $\sqrt{3}y-z=0$ 에 내린 수선의 발을 B라 할 때, $\overrightarrow{OA} \cdot \overrightarrow{OB}$ 의 값을 구하시오.

(단, O는 원점이다.)

24. 2010 수능 (4점)

평면에서 그림의 오각형ABCDE가

 \overline{AB} = \overline{BC} , \overline{AE} = \overline{BD} , $\angle B$ = $\angle E$ = 90^{o} 를 만족시킬 때, 옳은 것만을 <보기>에서 있는 대로 고른 것은?

---[보 기]----

- ㄱ. 선분 BE의 중점 M에 대하여 $\overrightarrow{AB}+\overrightarrow{AE}$ 와 \overrightarrow{AM} 은 서로 평행하다.
- $\overrightarrow{AB} \bullet \overrightarrow{AE} = -\overrightarrow{BC} \bullet \overrightarrow{ED}$ $\overrightarrow{ED} = |\overrightarrow{BE}|$
- ① ¬
- 2 =
- ③ ¬, ∟

- ④ ∟, ⊏
- (5) 7, L, E

25. **2013학년** 수능 (4점)

한 변의 길이가 2인 정삼각형 ABC의 꼭짓점 A에서 변 BC에 내린 수선의 발을 H라 하자. 점 P 가 선분 AH 위를 움직일 때, $|\overrightarrow{PA} \cdot \overrightarrow{PB}|$ 의 최댓값은 $\frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.)

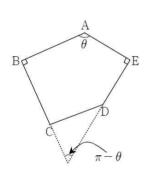
- 1) 정답 32
- 2) 정답 48
- 3) 정답 ②
- 4) 정답 12
- 5) 정답 12
- 6) 정답 ③
- 7) 정답 ②
- 8) 정답 106
- 9) 정답 13
- 10) 정답 21
- 11) 정답 12
- 12) 정답 8
- 13) 정답 60
- 14) 정답 ⑤
- 15) 정답 15
- 16) 정답 ③
- 17) 정답 ③
- 18) 정답 12
- 19) 정답 43
- 20) 정답 ①
- 21) 정답 ③
- 22) 정답 11
- 23) 정답 18
- 24) 정답 ⑤
- 25) 정답 7

23) 정답 ⑤

ㄱ. $\overrightarrow{AB} + \overrightarrow{AE} = 2\overrightarrow{AM}$ 이므로 $\overrightarrow{AB} + \overrightarrow{AE}$ 와 \overrightarrow{AM} 은 평행하다. (참) L. (참)

 $\angle B=\angle E=90^\circ$ 이므로 \overrightarrow{AB} 와 \overrightarrow{AE} 가 이루는 각을 θ 라 하면 \overrightarrow{BC} 와 \overrightarrow{ED} 가 이루는 각은 $\pi-\theta$ 이다. 따라서

 $\overrightarrow{AB} \cdot \overrightarrow{AE} = |\overrightarrow{AB}| |\overrightarrow{AE}|_{\cos\theta}$



BC · ED=|BC||ED|cos
$$(\pi-\theta)$$
=-|BC||ED|cos θ 이때, $\overline{AB} = \overline{BC}$, $\overline{AE} = \overline{ED}$ 이므로 \overline{AB} · $\overline{AE} = \overline{BC}$ · \overline{ED} (참) $\overline{ED} = \overline{BC} =$

24) 정답 **7** 해설

 $\angle BPH = \theta$ 라 하면

$$|\overrightarrow{PA} \cdot \overrightarrow{PB}| = |\overrightarrow{PA}| \cdot |\overrightarrow{PB}| \cdot \cos(\pi - \theta)| = |\overrightarrow{PA}| \cdot |\overrightarrow{PB}| \cdot \cos\theta|$$

$$= |\overrightarrow{PA}| \cdot |\overrightarrow{PH}| = \overrightarrow{PA} \cdot \overrightarrow{PH}$$

$$\overrightarrow{PA} = x, \overrightarrow{Ph} = y \ (x > 0, y > 0)$$
 라 하면

$$|\overrightarrow{PA} \cdot \overrightarrow{PB}| = xy, \ \overrightarrow{AH} = \sqrt{3} \ \text{olls}$$

$$x+y=\sqrt{3}$$

∴ (산술평균)≥(기하평균)으로부터

$$x+y \ge 2\sqrt{xy}$$
 (등호는 $x=y$ 일 때 성립)

$$\sqrt{3} \ge 2\sqrt{xy}$$
, $\frac{3}{4} \ge xy$

$$p+q=4+3=7$$

