1강 판 구조론과 대륙 분포의 변화

1	고생대 말기~중생대 초기에 초대륙가 존재했다.
2.	메소사우루스 화석은 남아메리카 대륙과 대륙에서 산출된다.
3	고생대 말 빙하 퇴적층과 빙하의 이동 흔적이 여러 대륙에서 발견되는 것은
	의 증거이다.
4.	홈스는 대륙을 이동시키는 원동력을라고 주장하였다.
5.	해수에서 초음파의 속력이 1500 m/s 라고 가정할 때, 초음파가 해저면에 반사되어 되돌
(아오는 데 걸리는 시간이 10초이면 수심은 m이다.
6.	은 해양판의 발산형 경계에 발달하는 해저 산맥이다.
7.	해령에서 멀어질수록 해양 지각의 연령과 심해 퇴적물의 두께는한다.
8.	해양판이 섭입하는 과정에서 섭입하는 해양판을 따라 발달하는 지진대를대라
-	고 한다.
9.	해저 고지자기 줄무늬는을 축으로 대칭을 이룬다.
10.	해령의 열곡과 열곡이 어긋난 구간에서 지진이 활발하게 발생하는 단층을 단
	층이라고 한다.
11.	나침반의 자침이 수평면과 이루는 각을이라고 한다.
12.	지구의 자전축과 북반구의 지표면이 만나는 지점을이라고 한다.
13.	자북극에서 복각은゜이고, 자남극에서 복각은゜이다.
14.	화성암에 포함된 광물에 의해 기록된 잔류 자기의 방향을 이용하여 화성암이
	생성된 위치를 추정할 수 있다.
15.	유럽 대륙과 북아메리카 대륙에서 측정한 지자기 북극의 겉보기 이동 경로가 어긋나
	있는 것은의 증거이다.
16.	지질 시대 동안 지리상 북극의 위치가 변하지 않았다고 가정한다면 고지자기 복각의
	크기는와 비례한다.
17.	판게아가 형성되면서 북아메리카의산맥과 유럽의산맥이 형성
	되었다.
18.	판게아가 존재하던 시기에 남반구에 존재하던 대륙을 대륙이라고 한다.
19.	판게아가 분리되면서 대서양의 넓이는하였다.
20.	약 2억 7천만 년 전에 초대륙가 형성되었다.
21.	현재 히말라야산맥의 높이는 점점지고 있다.
22.	현재와 같은 판의 이동 방향과 이동 속력이 지속된다면 한동안 대서양의 면적은
	핰 것이다

2강 판 이동의 원동력과 마그마 활동

1. 대륙판의 두께는 해양판보다고, 대륙판의 평균 밀도는 해양판보다다.	
2. 연약권은 상태이다.	
3. 판은 연약권보다 평균 밀도가다.	
4. 맨틀은 상태이지만 대류가 일어난다.	
5. 대서양 중앙 해령은 판의형 경계에 발달한 지형이다.	
6. 히말라야산맥과 마리아나 해구는 모두 판의형 경계에 발달한 지형이다.	
7. 변환 단층은 판의형 경계에 발달한다.	
8 구조론은 판의 내부에서 일어나는 화산 활동을 설명할 수 있다.	
9. 맨틀에서운 플룸은 주위보다 밀도가 크고,운 플룸은 주위보다 밀도가 작다	
10. 현재 아시아 대륙 아래에는 거대한운 플룸이 있다.	
11. 하와이 열점은운 플룸에 의해 화산 활동이 일어나는 곳이다.	
12. 현재 동아프리카 열곡대 아래에는운 플룸이 있다.	
13. 열점에서 멀어질수록 화산섬의 연령이한다.	
14. 마그마가 굳어져 만들어진 암석을암이라고 한다.	
15. 현무암질 마그마는 유문암질 마그마보다 SiO_2 함량(%)이다.	
16. 용융된 액체 상태의 물질과 용융되지 않은 고체 상태의 물질이 섞여 있는 상태를	_
상태라고 한다.	
17. 해령 하부에서는 주로질 마그마가 생성된다.	
18. 열점에서는 주로질 마그마가 생성된다.	
19. 화성암은 SiO_2 함량에 따라 염기성암, 중성암,암으로 구분된다.	
20. 심성암에는 주로질 조직이 발달한다.	
21. 화산암이면서 염기성암인 화성암은암이다.	
22. 심성암이면서 산성암인 화성암은암이다.	
23. 화산암이 생성되는 과정에서 기둥 모양으로 만들어진 절리를 절리라고 한다.	

3강 퇴적암과 지질 구조

1.	퇴적물이 다져지고 굳어지면서 퇴적암이 되기까지의 전체 과정을이라고 한다.
2.	속성 작용 중에서 작용은 아랫부분의 퇴적물이 윗부분에 쌓인 퇴적물의 무게에
	의해서 다져지는 작용이다.
3.	퇴적암은 퇴적 입자의 크기에 따라 역암, 사암, 이암 등으로 구분한다.
4.	바닷물에 녹아 있던 NaCl 성분이 침전되어 생성된 암염은 퇴적암에 속한다.
5.	석회암 중에서 물에 녹아 있던 ${\sf CaCO_3}$ 가 화학적으로 침전되어 만들어진 것은
	퇴적암에 해당하고, 석회질 생물체가 쌓여 만들어진 것은 유기적 퇴적암에 해당한다.
6.	퇴적 구조는 퇴적 당시의을 추정하고 지층의 역전을 밝히는 데에도 도움을 준다.
7.	층리가 나란하지 않고 비스듬히 기울어지거나 엇갈려 나타나는 퇴적 구조는이다.
8.	사층리는 일반적으로 아래쪽에서 위쪽으로 갈수록 층리의 폭이진다.
9.	한 지층 내에서 위로 갈수록 입자의 크기가 점점 작아지는 퇴적 구조를라고 한다.
10.	수심이 깊은 바다에 다양한 크기의 퇴적물이 한꺼번에 공급될 때, 큰 입자는 작은 입자
	보다 침강 속도가
11.	퇴적물의 표면에 물결 모양으로 자국이 생긴 후 퇴적층 속에 남아 있는 퇴적 구조를
	이라고 한다.
12.	연흔은 퇴적물이 수심이 물밑 등에서 퇴적될 때 잘 형성된다.
13.	퇴적층의 표면이 쐐기 모양으로 갈라져 생긴 퇴적 구조를이라고 한다.
14.	역전되지 않은 지층에서 건열의 쐐기 모양으로 갈아진 부분은 표면에서 아래로 가면서
	지는 경향을 보인다.
15.	퇴적 환경은 크게 육상 환경, 환경, 해양 환경으로 구분한다.
16.	선상지, 하천, 호수, 사막 등은 환경에 해당한다.
17.	는 하천과 바다가 만나는 곳에서 만들어진 삼각형 모양의 지형으로, 사층리가 잘
	형성된다.
18.	대륙대에는 대륙 사면의 급경사를 따라 다양한 퇴적물이 흘러와 쌓이면서가
	잘 형성된다.
19.	강원도 태백시 구문소의 퇴적층에서는대 바다에서 살았던 삼엽충과 완족류 화석
	이 발견된다.
20.	경기도 화성시 시화호의대에 형성된 사암층에는 다량의 공룡알 화석이 발견된다.
21.	습곡은 암석이을 받아 형성된다.
22.	습곡에서 위로 볼록하게 휘어진 부분을, 아래로 오목하게 휘어진 부분을
	라고 한다.
23.	고도가 일정한 지역에서 지표면에 노출된 지층의 연령은 향사축으로 접근할수록한다.
24.	상반이 하반에 대해 아래로 이동한 단층은이고, 상반이 하반에 대해 위로
	이동한 단층은 이다.

25.	정단층은 지층이을 받아 형성된 것이고, 역단층은 지층이을 받아 형성
	된 것이다.
26.	주상 절리는 기둥 모양의 절리로, 지표로 분출한 용암이 급격히 식을 때 부피가히
	여 형성된다.
27.	심성암이 지표면에 드러나 가해지는 압력이 감소하면 심성암의 부피가하면서
	절리가 형성될 수 있다.
28.	주상 절리는에서 잘 나타나고, 판상 절리는에서 잘 나타난다.
29.	퇴적이 연속적으로 일어난 경우 상하 지층의 관계를이라고 한다.
30.	부정합은 퇴적 $ ightarrow$ \longrightarrow \longrightarrow 풍화·침식 \rightarrow 침강 \rightarrow 퇴적의 과정을 거쳐 형성된다.
31.	부정합면을 경계로 상하 지층이 나란한 부정합을 부정합이라고 한다.
32.	지하에서 생성된 심성암이나 변성암이 융기하여 침식 작용을 받은 후 그 위에 새로운
	지층이 퇴적되어 생긴 부정합을이라고 한다.
33.	마그마가 기존 암석의 약한 부분을 뚫고 들어가 굳어진 암석을이라고 한다.
34.	마그마가 관입할 때 주변 암석의 일부가 떨어져 나와 마그마 속으로 유입되는 것을
	이라고 한다.

4강 지구의 역사

1. 바나나 호수 밑에 퇴석물이 쌓일 때는의 영향을 받아으로 쌓인나.
2. 지층의 역전이 없었다면 아래에 있는 지층은 위에 있는 지층보다 생성되었다.
3. 지층의 역전 여부는나 표준 화석을 이용하여 판단할 수 있다.
 동물군 천이의 법칙에 의하면 오래된 지층에서 새로운 지층으로 갈수록 더욱 생물의 화석이 산출된다.
5. 부정합면 위에는 기존의 암석 파편 중 큰 것이 퇴적되어으로 나타나기도 한다.
6. 관입 당한 암석은 관입한 화성암보다 생성되었다.
7. 여러 지역에 분포하는 지층들을 서로 비교하여 시간적인 선후 관계를 밝히는 것을라고 한다.
8. 암상에 의한 대비를 할 때 기준이 되는 지층을 또는이라고 한다.
9. 같은 종류의 화석이 산출되는 지층은 같은 시기에 생성된 지층이다.
10. 지질학적 사건의 발생 순서나 지층과 암석의 생성 시기를 상대적으로 나타낸 것을
이라고 한다.
11. 절대 연령을 측정할 때는 방사성 동위 원소의를 이용한다.
12. 붕괴하는 방사성 동위 원소를, 방사성 동위 원소가 붕괴하여 생성되는 원소를라고 한다.
13. 방사성 동위 원소가 붕괴하여 처음 함량의 반으로 줄어드는 데 걸리는 시간을 라고 한다.
14. 시간이 지남에 따라 모원소의 함량은 지속적으로하고, 자원소의 함량은 지속적으로 로한다.
15. 반감기가 4번 지나면 방사성 동위 원소의 함량은 처음 함량의이 된다.
16. 퇴적암에서 측정한 절대 연령은 퇴적암의 퇴적 시기을 지시한다.
17. 반감기가 약 5730년으로 짧고 탄소를 포함한 유기물의 절대 연령 측정에 많이 이용되는 방사성 동위 원소는 다.
- · · · · · · · · · · · · · · · · · · ·
18. 지질 시대 결정과 지층 대비에 유용한 화석을이라고 한다.
19. 시상 화석은 생물이 살았던 시기의을 추정하는 데 이용된다.
20. 지질 시대는계에서 일어난 급격한 변화나 지각 변동, 기후 변화 등을 기준으를 구분한다.
21 누대는 고생대, 중생대, 신생대로 세분된다.
22. 빙하를 구성하는 물 분자의 산소 안정 동위 원소 비율로부터 변화를 추정할 수 있다
23. 고생대, 중생대 신생대 중에는 빙하기가 없었다.
24. 에디아카라 동물군 화석은 누대 말기에 나타났던 다세포 동물들의 화석이다.
25. 삼엽충은 고생대기에 출현하였다.
26. 고생대기에는 파충류가 출현하였고, 양치 식물은 거대한 삼림을 형성하였다.

27.	고생대 말기에 여러 대	륙들이 하나로 또	고여 초대륙	_를 형성하였다.	
28.	중생대 트라이아스기에는	- 판게아가 분리	되면서과 역	인도양이 형성되기 시작하	ŀ였다.
29.	중생대기에	육지에서 공룡	과 원시 포유류가 흙	출현하였다.	
30.	공룡은 중생대	말에 멸종하였	다.		
31.	대에 인도 대륙이	유라시아 대륙	과 충돌하여	산맥이 형성되었다.	
32	시생대에는 건씨시문이	신퇴하고	신물이 버섯하였다	-	

5강 대기의 변화

1. 주변보다 기압이 높은 곳을이라고 한다.	
2. 저기압 중심에는 기류가 발달하여 구름이 형성되고 날씨가	
3. 고기압의 중심부가 거의 이동하지 않고 한곳에 머무르는 고기압을 고기압이라고 한다	ł.
4. 우리나라의 여름철에 영향을 미치는 정체성 고기압은 고기압이다.	
5. 양쯔강 기단에서 발달하여 이동하는 비교적 규모가 작은 고기압을 고기압이라고 한	다.
6. 온대 저기압은 지역의 정체 전선상의 파동으로부터 발생한다.	
7. 북반구에서는 온대 저기압 중심으로 바람이 방향으로 불어	
8. 한랭 전선과 온난 전선이 겹쳐지면 전선이 형성된다.	
9. 우리나라를 통과하는 온대 저기압은의 영향으로 서쪽에서 동쪽으로 이동한다.	
10. 한랭 전선의 이동 속도가 온난 전선의 이동 속도보다	
11 전선은 찬 기단과 따뜻한 기단의 세력이 비슷하여 전선이 거의 이동하지 않	고
한곳에 오랫동안 머무르는 전선이다.	
12. 한랭 전선의 후면에서는형 구름이 형성된다형	
13. 온난 전선이 통과하면 기온이한다.	
14. 온난 전선과 한랭 전선 사이에서는 날씨가고,풍이 분다.	
15. 한랭 전선이 통과하면 기압이한다.	
16 전선이 다가올 때는 구름의 높이가 점차 낮아진다.	
17. 한랭 전선의 후면에서는성 강수가 있다.	
18. 한랭 전선이 통과하면 기온이한다.	
19. 북반구의 경우 온난 전선의 전면에서는풍이 분다.	
20. 위성 영상 중 영상은 태양 빛이 있는 주간에만 관측이 가능하다.	
21. 태풍의 에너지원은 수증기가 응결하면서 방출하는이다.	
22. 북반구 서태평양의 열대 해상에서 발생하는 열대 저기압 중 중심 부근 최대 풍	속
이 17 m/s 이상인 것을이라고 한다.	
23 부근 해역에서는 전향력이 약하여 태풍이 거의 발생하지 않는다.	
24. 태풍의 등압선은 일기도 상에서 매우 좁은 형태로 나타난다.	
25. 열대 저기압은 온대 저기압과 달리을 동반하지 않는다.	
26. 북반구에서 태풍 진행 방향의쪽은쪽보다 바람이 강하다.	
27. 북반구에서 태풍 진행 방향의 오른쪽을 반원이라고 한다.	
28. 북반구에서 태풍은 무역풍대에서는 북서쪽으로, 편서풍대에서는 북동쪽으로 이동하므	.로
궤도를 그리며 이동한다.	
29. 태풍에 의해 발생한 해일이 조석의와 겹치면 해안가에 더 큰 피해를 일으킬 수 있다	ł.
30. 태풍의 중심으로부터 반지름 약 15~30 km에는 약한 기류가 나타나 날씨가 밁	은
대포의 이 조재하다	

31.	태풍이 육시에 상륙하면 수승기의 공급이 줄어들어 세력이해신나.
32.	태풍 진행 방향의 오른쪽 지역은 시간에 따라 풍향이 방향으로 변한다.
33.	태풍의 발생은 지구 시스템을 구성하는 권역 중 기권과의 상호 작용에 해당한다.
34.	태풍은 비교적 짧은 시간 동안 대규모의 열을 _위도에서 _위도로 운반하는 역할을 한다.
35.	온대 저기압은 찬 기단과 따뜻한 기단이 만나서 형성되므로을 동반한다.
36.	태풍의 등압선은 일반적으로 온대 저기압의 등압선보다 간격이다.
37.	우리나라를 통과하는 온대 저기압은 주로의 영향을 받아 이동한다.
38.	북상하는 태풍이 무역풍대를 통과할 때는 주로쪽으로 이동한다.
39.	열대 저기압 중 중앙 아메리카 대륙 주변 해역에서 발생하는 것을이라고 한다.
40.	뇌우는 강한 상승 기류에 의해이 발달하면서 천둥, 번개와 함께 소나기가 내
	리는 현상이다.
41.	뇌우의 발달 단계 중 천둥, 번개, 소나기, 우박 등은 주로 단계에서 나타난다.
42.	호우는 국지적으로 단시간 내에 많은 양의 비가 집중하여 내리는 현상이다.
43.	우리나라의 여름철에 주로 발생하는 집중 호우는와 산사태 등의 피해를 일으킬
	수 있다.
44.	우리나라 서해안의 폭설은 겨울철에 기단이 황해상에서 변질되어 기층이 불
	안정해져서 상승 기류가 발달할 때 잘 발생한다.
45.	한랭한 기단이 따뜻한 바다 위로 이동하면 기층이 불안정해지므로형 구름이 형성된다.
46.	온난한 기단이 차가운 바다 위로 이동하면 기층이 안정해지므로형 구름이나
	가 형성된다.
47.	기단이 발원지를 떠나 다른 곳으로 이동하여 성질이 변하는 것을 기단의이라고 한다.
48.	강풍은 겨울철에 발달한 시베리아 기단의 영향을 받을 때나 여름철에의 영향을
	받을 때 발생할 수 있다.
49.	은 얼음의 결정 주위에 차가운 물방울이 얼어붙어 생성된 후 낙하하는 얼음덩어리이다.
50.	황사는 다량의 모래 먼지가 상층의을 타고 멀리까지 날아가 서서히 내려오는
	현상이다.
51.	우리나라에 영향을 미치는 황사의 주요 발원지는 중국 북부나의 사막 또는 건조
	한 황토 지대이다.
52.	황사가 발생하려면 발원지에서 강한 바람과 함께 기류가 나타나고, 지표면의 토
	양은해야 한다.
53.	우리나라의 경우 강수량이 많은철에는 황사가 거의 발생하지 않는다.
54.	중국 내륙 지역의 삼림 파괴와가 가속화되면 우리나라에서 황사로 인한
	피해가 증가할 가능성이 높다.

6강 해양의 변화

1. 표층 해수의 온도 분포에 가장 큰 영향을 미치는 요인은 복사 에너지이다.	
2. 아열대 해양에서는 대양의 동안보다 서안에서 해수의 표층 수온이 대체로다.	
3 두께는 바람이 약한 저원 지방보다 바람이 강한 중위도 지방에서 두껍다.	
4. 적도 해역은 증발량이 강수량보다 적어서 표층 염분이 중위도 해역보다게 나타난	다.
5. 극지방에서 결빙이 일어나면 주변 해수의 표층 염분이아진다.	
6. 육지로부터 담수가 흘러 들어오는 연안은 대양의 중심부보다 표층 염분이다.	
7. 우리나라 주변 해수의 표층 염분은 여름철보다 겨울철에 대체로다.	
8. 해수의 밀도는 수온이을수록, 염분이을수록 커진다.	
9. 해수의 용존 산소량은 해수의 표층보다 심층에서다.	
10. 해수의 용존 이산화탄소량은 표층에서 때문에 적지만 수심이 깊어질수록 증가한	다.
11. 대기 대순환의 발생 원인은 위도에 따른 불균형이다.	
12. 지구가 자전하지 않을 때 북반구에서는개의 순환 세포가 형성되며, 지상에	서는
풍이 분다	
13. 대기 대순환 모형에서 위도 0°~30° 사이에 형성된 순환 세포를 순환이라고 힌	다.
14. 해들리 순환과 극순환은 순환이고, 페렐 순환은 순환이다.	
15. 표층 해류는에 의해 형성되므로 표층 해류의 방향은 대기 대순환의 영향을 받는	=다.
16. 북적도 해류와 남적도 해류는에 의해, 북태평양 해류는에 의해 형성된	구.
17. 북반구의 아열대 순환에서 해류는 방향으로, 남반구의 아열대 순환에서 해	류는
방향으로 흐른다.	
18. 편서풍에 의해 남극 대륙 주위를 흐르는 해류를 해류라고 한다.	
19. 북반구와 남반구의 표층 순환은 적도 부근을 경계로 대체로적인 분포를 보인	다.
20. 해류는위도의 에너지를위도로 수송하는 역할을 한다.	
21. 우리나라 주변 난류의 근원은 해류이다.	
22. 동해에서는 난류와 한류가 만나 조경 수역이 형성된다.	
23. 한류는 난류에 비해 용존 산소량과 영양염이다.	
24. 해수의 심층 순환은 해수의 차에 의해 일어나는 순환이다.	
25. 해수의 심층 순환은 표층 순환에 비해 해수의 이동 속도가 매우	
26. 표층에서 침강하여 흐르면서 수온과 염분이 거의 일정하게 유지되는 해수 덩어	리를
라고 한다.	
27. 극 지역에서 밀도가 커져한 해수는 저층에서 적도를 향해 흐른다.	
28. 북대서양 심층수는 남극 저층수보다 밀도가다.	
29 신추 수화은 용조 가 포부하 표추 해수를 신해로 오반하는 연항을 하다	

7강 대기와 해양의 상호 작용

1은 심층의 찬 해수가 표층으로 올라오는 현상을 말한다.	
2. 북반구에서 대륙의 동해안에 풍이 지속적으로 불 때 연안 용승이 일어날 수 있다	가 .
3 용승은 무역풍 때문에 부근 해역에서 심층의 찬 해수가 올라오는 현상	이다.
4. 북반구에서 지속적으로 부는 고기압성 바람에 의해 고기압 중심부의 표층 해수는 _	
한다.	
5. 용승의 영향으로 대기가되므로, 용승이 일어나는 해역 주변에서는 서늘한 날	날씨기
나타나고 안개가 자주 발생한다.	
6. 엘니뇨는 태평양 적도 부근에서 부는 무역풍이해지면서 발생한다.	
7. 엘니뇨가 발생하면 열대 태평양 중앙부에서 동태평양에 이르는 해역의 표층 수온이	진다.
8. 라니냐 시기에는 열대 동태평양 해역의 연안 용승이 평상시보다해진다.	
9. 엘니뇨가 발생하면 열대 서태평양의 해면 기압은 평상시보다진다.	
10. 엘니뇨와 라니냐 현상과 관련하여 열대 태평양의 기압 분포가 시소 현상을 나타	나내는
것을이라고 한다.	
11. 엘니뇨 시기에는 워커 순환에서 대기가 상승하는 지역이 평상시보다쪽으로 이동	한다.
12. 라니냐 시기에는 열대 동태평양의 강수량이 평년보다한다.	
13. 엘니뇨 시기에는 라니냐 시기보다 남방 진동 지수가다.	
14. 남방 진동 지수가질수록 열대 동태평양 해역의 연안 용승이 활발하다.	
15. 엘니뇨와 남방 진동을 합쳐서이라고 한다.	
16. 지질 시대의 기후는 빙하 시추물, 나무의 나이테, 등의 연구로부터 알아낸다	ł.
17 운동은 지구의 자전축이 약 26000년을 주기로 회전하여 자전축의 경사 병	J향0
변하는 현상이다.	
18. 지구 자전축의 경사각이 현재보다지면 기온의 연교차가 커진다.	
19. 지구의 공전 궤도 이심률이 현재보다지면 근일점 거리는 가까워지고 원일점	거리
는 멀어진다.	
20. 소빙하기로 알려진 시기에는 태양 수가 대체로 적었다.	
21. 수륙 분포의 변화는 기후를 변화시키는 자연적 요인 중 지구 요인에 해당한	다.
22. 화산이 폭발할 때 분출된 화산재 등은 지구의 반사율을시키는 역할을 한다.	
23. 인간 활동에 의한 대기 중의 증가는 지구의 평균 기온을 상승시키는 역	격할을
한다.	
24. 지구는을 이루고 있어서 연평균 기온이 거의 일정하게 유지된다.	
25. 대기는 지표가 방출하는 133 단위의 에너지 중 단위를 흡수한 후, 그중 일	실부를
지표로 재복사한다.	
26. 인간 활동에 의한 온실 기체 증가가 지구의 주요 원인으로 여겨지고 있다	ł.
27 화석 연료 사용량의 증가로 인해 대기 중 온식 기체의 양이 하고 있다	

- 28. 지구 온난화가 심해지면 기상 이변의 발생 횟수가 ____할 것으로 예상된다.
- 29. ____ 의정서는 1997년에 국가 간 온실 기체의 감축 목표치를 규정한 국제 협약이다.
- 30. 최근 100년간 한반도의 평균 기온은 지구의 평균 기온보다 약 __배 크게 상승하였다.
- 31. 우리나라의 기후는 점차 고온 다습한 기후로 변해가고 있으며, 주요 작물 재배지가 ____하고 있는 추세이다.

8강 별의 특성

1	은 전자기파를 파장별로 분산시켜 나타난 스펙트럼을 관측하는 것이다.
2. =	스펙트럼은 연속 스펙트럼, 스펙트럼, 방출 스펙트럼으로 구분한다.
	플랑크 곡선에서 최대 복사 에너지를 방출하는 파장은 별의에 반비례한다.
4. <u></u>	별의 표면 온도가 높을수록색을 띠고, 별의 표면 온도가 낮을수록색을 띤다.
5. 스	백지수는 별의 표면 온도가 높을수록진다.
6. I	표면 온도가 약 10000 K인 별은색이고, 색지수는이다.
7. 분	분광형 O, B, A, F, G, K, M형은 별의 표면 온도가 것부터 정렬한 것이다.
8. <i>A</i>	A형 별에서는에 의한 흡수선이 가장 강하게 나타난다.
9. I	표면 온도가 별의 경우 금속 원소와 분자에 의한 흡수선이 강하게 나타난다.
10.	흑체가 단위 시간에 단위 면적당 방출하는 에너지는 표면 온도의제곱에 비례한다.
11.	별의 광도는의 제곱과의 4제곱에 비례한다.
12.	별의 광도가 같을 때, 표면 온도가 높을수록 반지름이
13.	광도 계급이 V인 별은에 해당한다.
	별의 분광형이 같을 때, 광도 계급의 숫자가수록 반지름이 크다.
15.	H-R도의 왼쪽 위에서 오른쪽 아래로 대각선을 따라 분포하는 별들을이라고 한다.
16.	거성은 별이 주계열 단계에 있을 때보다 반지름이
	적색 초거성은 백색 왜성에 비해 표면 온도가, 평균 밀도가
18.	H-R도의 세로축에서 위로 갈수록 광도가
19.	질량이 큰 별일수록 주계열에 머무르는 기간이
20.	별은 밀도가, 온도가 성운에서 탄생한다.
21.	원시별이 수축하여 중심부에서 수소 핵융합 반응이 일어나는 온도에 도달하면 주계열성
	이 된다.
22.	원시별에서 주계열성이 되는 데 걸리는 시간은 질량이 큰 별일수록
23.	주계열성은 주로 반응에 의해 에너지를 얻는다.
24.	주계열성은 별의 중심 쪽으로 향하는과 바깥쪽으로 향하는이
	평형을 이룬다.
25.	별의 일생에서 가장 오랜 시간을 보내는 단계는 단계이다.
26.	주계열성은 질량이수록 광도가 크다.
27.	주계열 이후의 별의 진화 경로는 별의에 따라 달라진다.
28.	별의 내부가 불안정하여 수축과 팽창을 주기적으로 반복하는 별을 변광성이라고 한다.
29.	태양 정도의 질량을 가지는 별의 최후 단계는 행성상 성운과이다.
30.	질량이 매우 큰 별은 마지막 단계에서 중력 수축을 하다가 폭발을 한다.
31.	초신성 폭발 이후 중심핵은 질량에 따라이나로 진화한다.
32.	원시별에서는 기체 압력 차에 의한 힘보다 중력이 더

33.	중력 수축 에너지는 별이 중력에 의해 수축될 때 위치 에너지의로 인해 생성되
	는 에너지이다.
34.	중력 수축 에너지는 별의 탄생이나 진화 과정에서 내부의를 높이는 역할을 한다.
35.	현재 태양 광도와 비교했을 때 중력 수축에 의한 에너지만으로는 태양의 나이를 설명
	할 수
36.	수소 핵융합 반응에서는개의 수소 원자핵이 융합하여 1개의 헬륨 원자핵을 생성한다.
37.	수소 원자핵 4개의 질량이 헬륨 원자핵 1개의 질량보다
38.	CNO 순환 반응은 중심부 온도가 주계열성에서 주로 일어나는 수소 핵융합 반
	응이다.
39.	헬륨 핵융합 반응에서는 3개의 헬륨 원자핵이 융합하여 1개의 원자핵을 생성한다.
40.	질량이 매우 큰 별은 중심부의 온도가기 때문에 헬륨보다 무거운 원소들의 핵융합
	반응이 일어날 수 있다.
41.	질량이 태양보다 훨씬 큰 별의 내부에서 핵융합 반응으로 만들어지는 마지막 원소는이다.
42.	주계열성은 기체 압력 차에 의한 힘과 중력이 평형을 이루는에 있다.
43.	질량이 태양 정도인 주계열성의 내부 구조는 중심에서부터 중심핵,, 순
	으로 되어 있다.
44.	별은 주계열 단계 이후 헬륨핵의 중력 수축으로 발생한 에너지가에서 수소
	핵융합 반응을 일으킨다.
45.	주계열을 벗어난 별은 바깥층이 팽창하여 표면 온도가진다.
46.	질량이 매우 큰 별은 주계열 단계 이후 핵융합 반응이 연속적으로 일어나 내부가_
	같은 구조를 이룬다.
47.	별의 내부에서 반응에 의해 철보다 무거운 원자핵은 만들어질 수 없다.

9강 외계 행성계와 외계 생명체 탐사

1.	태양계 밖의 별과 그 별 주위를 공전하는 행성들이 이루는 계를라고 한다.
2.	행성의이 관측자의 시선 방향과 수직일 때는 중심별의 도플러 효과가 나타
	나지 않는다.
3.	별 주위를 공전하는 행성에 의해 식 현상이 일어나면 별의가 변하므로 이를 이용
7	하여 외계 행성의 존재를 확인할 수 있다.
4.	미세 중력 렌즈 현상을 이용하여 행성을 탐사할 때는 주기적인 관측이하다.
5.	행성을 직접 관측할 때는 주로 영역에서 촬영한다.
6.	행성의 공전 궤도면이 관측자의 시선 방향과한 경우에는 도플러 효과, 식 현상,
ı	미세 중력 렌즈 현상 모두를 이용하여 행성의 존재를 확인할 수 있다.
7	도플러 효과를 이용하여 발견한 행성들은 대부분 지구보다 질량이다.
8.	직접 관측하여 발견한 외계 행성들은 대부분 지구보다 질량과 공전 궤도 반지름이다.
9.	식 현상을 이용하여 발견한 외계 행성들은 대부분 지구보다 공전 궤도 반지름이다.
10.	목성형 행성은 지구형 행성보다 생명체가 존재할 가능성이 지구하다.
11.	별의 주위에서 물이 액체 상태로 존재할 수 있는 거리의 범위를 지대라고 한다.
12.	주계열성인 중심별의 질량이 클수록 광도가다.
13.	주계열성인 중심별의 질량이 클수록 생명 가능 지대는 중심별로부터진다.
14.	태양이 진화함에 따라 광도가 커지면 생명 가능 지대의 폭이진다.
15.	액체 상태의은 다양한 종류의 화학 물질을 녹일 수 있으므로에서 복잡한 유기
	물 분자가 생성될 수 있다.
16.	행성의은 우주에서 들어오는 우주선 등의 고에너지 입자를 차단한다.
17.	주계열성은 H-R도에서 왼쪽 위에 분포할수록 표면 온도가고, 질량과 광도가다.
_	분광형이 O형인 주계열성은 K형인 주계열성보다 수명이다.
19.	주계열성의 질량이 크면 별의 중심부에서 연료 소모율이서 광도가고, 수명이다.
20.	행성이 중심별에 가까이 있으면 공전 주기와 자전 주기가 같아질 수 있는데, 이를 _
	이라고 한다.
21.	큐리오시티는 탐사 로봇으로의 기후와 지질 조사 및 생명체 존재 여부에
	대한 탐사를 진행 중이다.
22.	케플러 망원경은 주로을 이용하여 외계 행성을 탐사하였다.
23.	2018년에 발사된 망원경은 케플러 망원경보다 약 400배 더 넓은 우주 영역을 탐
	니하 스 이다

10강 외부 은하와 우주 팽창

1.	허블은 외무 은하들 영역에서 관측되는 모양에 따라 타원 은하, 나선 은하,
	불규칙 은하로 분류하였다.
2.	타원 은하는 모양이 가장 원에 가깝게 보이는부터 가장 납작한 타원형으로 보이
	는까지 구분한다.
3.	나선 은하 중에서 은하핵을 가로지르는 막대 모양의 구조가 없는 은하를 나선 은
	하라고 한다.
4.	불규칙 은하에는 주로과은 별이 많이 분포한다.
5.	전파 은하의 중심부에서 강하게 뿜어져 나오는 물질의 흐름을라고 한다.
6.	퀘이사는 수많은 별들로 이루어진 은하이지만 매우 있어 하나의 별처럼 보인다.
7.	세이퍼트은하는 일반적인 은하에 비해 매우 밝은을 가지며, 방출선을 보인다.
	세이퍼트은하는 대부분 은하의 형태로 관측된다.
9.	가까운 곳에 위치한 두 은하 사이에 강한 인력이 작용하면 두 은하가할 수 있다.
10.	허블은 외부 은하의 관측을 통해 대부분 은하들의 스펙트럼상에서가 나티
	남을 알 수 있다.
11.	허블 법칙은 은하의 거리와가 비례한다는 것이다.
12.	외부 은하의 거리를 가로축 물리량으로, 후퇴 속도를 세로축 물리량으로 나타낸 그래프
	에서 기울기는이다.
13.	관측 가능한 우주의 크기는 우주의에의 속도를 곱한 값이다.
14.	외부 은하의 후퇴 속도는 외부 은하 흡수선의 변화량에 비례한다.
15.	우주론은 우주가 매우 뜨거운 한 점에서 폭발하여 팽창하였다는 이론이다.
16.	정상 우주론에서는 빅뱅 우주론과 달리 우주의와가 일정하다고 주장한다.
17.	빅뱅 우주론에 의하면 초기 우주에서 생성된 수소와의 질량비는 약 3:1이다.
18.	양성자개와 중성자 2개로 이루어진 원자핵은 헬륨 원자핵이다.
19.	초기 우주에서 원자가 생성되면서 모든 방향으로 퍼져 나간 빛이 현재로
	관측된다.
20.	우주 배경 복사는 우주의 온도가 약 K일 때 방출되었던 복사이다.
21.	현재 관측되는 우주 배경 복사는 약 K 흑체 복사와 같은 에너지 분포를 보인다.
22.	펜지어스와 윌슨은 전파 망원경으로 하늘의 모든 방향에서 같은 세기로 나타나는 익
	cm 파장의 전파를 발견하였다.
23.	플랑크 망원경이 관측한 복사로 알아낸 우주 초기의 분포는 거의 균일하다.
24.	이론상 독립적으로 존재하는 N극과 S극을이라고 한다.
25.	이론으로 우주의 평탄성 문제와 지평선 문제를 설명할 수 있었다.
26.	우주 전체가 곡률을 가지고 있더라고 우주 생성 초기에 급팽창하여 공간의 크기가 매
	으 커지게 되며 과츠되느 으즈이 영역으 - 하게 과츠되다

27.	la형은 백색 왜성이 주변의 별로부터 물질을 끌어들여 폭발할 때 나타나며
	최대로 밝아졌을 때의 등급이 일정하다.
28.	과거에는 우주를 구성하는 물질의 때문에 시간에 따라 우주의 팽창 속도가힐
	것이라고 예상하였다.
29.	최근의 관측 결과 현재의 우주는 팽창 속도가하는 것으로 밝혀졌다.
30.	전자기파로 관측되지 않아 우리 눈에 보이지 않기 때문에 중력을 이용한 방법으로 그
	존재를 확인할 수 있는 물질을이라고 한다.
31.	최근 암흑 물질의 존재를 확인하는 데 현상을 이용하기도 한다.
32.	우리은하의 회전 속도를 관측하여의 존재를 확인할 수 있다.
33.	암흑 에너지는으로 작용해 우주를 가속 팽창시킨다.
34.	우주는 생성 초기 급팽창 이후 팽창 속도가하다가 다시하였다.
35.	팽창하는 우주 모델은 보통 물질과 암흑 물질만을 고려한 모델이다.
36.	현재 우주를 구성하고 있는 것 중에서 차지하는 비율이 가장 높은 것은이다.
37.	평탄 우주에서는 우주의 평균 밀도와 밀도가 같다.
38.	닫힌 우주는 곡률이인 우주이다.
39.	현재 우주는하지만 암흑에 의해 팽창 속도가 점점 증가한다고 추정하고 있다.
40.	시간에 따른 우주 크기의 변화율은이다.
41.	우주의 나이는 가속 팽창 우주 모형으로 추정한 값이 팽창 속도가 일정한 우주로 추정
	한 값보다다.