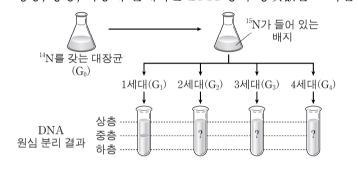
이 세상에 보장된 것은 아무 것도 없다. 오직 기회만이 있을 뿐.

ㅡ더글라스 맥아더

There is no security on this earth, there is only opportunity.

-Douglas MacArthur

2023 THE CODE BREAKER PLUS+ PACK 문제지


[제4교시]

과학탐구 영역(생명과학Ⅱ)

성명 수험 번호 제 () 선택

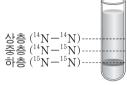
CODE #1. Meselson-Stahl Experiment

- 1. 다음은 DNA의 반보존적 복제를 증명하는 실험 과정이다.
 - (가) 모든 DNA가 ¹⁴N로 표지된 대장군(G₀)을 ¹⁵N가 들어 있는 배지로 옮겨 배양하면서 1세대(G₁), 2세대(G₂), 3세대(G₃), 4세대(G₄) 대장군의 DNA를 추출한다.
 - (나) (가)에서 추출한 각 세대의 DNA를 각각 원심 분리하여 상층, 중층, 하층에 존재하는 DNA 양의 상댓값을 조사한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [150905]

一<보 기>一

- ㄱ. G_2 에서 전체 DNA 중 14 N가 존재하는 DNA 가닥을 갖는 이중 나선 DNA의 비율은 $\frac{1}{2}$ 이다.
- ㄴ. ¹⁵N 대신 ³⁵S을 이용해도 반보존적 복제를 증명할 수 있다.
- 다. C5에서 DNA 양의 비는 중층: 하층 = 1:7이다.


2. 다음은 DNA 복제에 대한 실험이다.

[실험 과정]

- (가) 대장균을 ¹⁵N가 들어 있는 배지에서 배양하여 모든 DNA가 ¹⁵N로 표지되게 한다.
- (나) (가)에서 배양한 대장균(G₀)의 일부를 ¹⁴N가 들어 있는 배지로 옮겨 배양하여 1 세대 대장균(G₁)과 2 세대 대장균 (G₂)를 얻는다.
- (다) (나)의 G_2 를 다시 ¹⁵N가 들어 있는 배지로 옮겨 배양하여 3세대 대장균(G_3)과 4세대 대장균(G_4)를 얻는다.
- (라) $G_0 \sim G_4$ 의 DNA를 추출하고 각각 원심 분리하여 상층, 중층, 하층에 존재하는 이중 나선 DNA의 상대량을 확인한다.

(실험 결과)

○ G₀의 DNA를 원심 분리한 결과는 그림과 같았다.

○ (라)에서 A 층에는 DNA가 없고, B 층과 C 층의 DNA 상대량의 비가 5:3으로 나타나는 세대가 있었다. (A~C 층은 각각 상층, 중층, 하층 중 하나이다.)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [160618]

--<보 기>

- □. (라)에서 A층에는 DNA가 없고, B층과 C층의 DNA 상대량의 비가 3:1로 나타나는 세대가 있다.
- ∟. G₀에서 ¹⁵N는 DNA의 구성 성분 중 5 탄당에 존재한다.
- 다. B층 이중 나선 DNA의 단일 가닥 각각에는 모두 ¹⁵N가 있다.

과학탐구 영역

3. 다음은 DNA 복제에 대한 실험이다.

[실험 과정]

- (가) 모든 DNA가 ¹⁴N로 표지된 대장균(G₀)을 ¹⁵N가 들어 있는 배지로 옮겨 배양하여 1세대 대장균(G₁), 2세대 대장균(G₂), 3세대 대장균(G₃)을 얻는다.
- (나) (7)의 G_3 을 다시 ^{14}N 가 들어 있는 배지로 옮겨 배양하여 4 세대 대장균 (G_4) 을 얻는다.
- (다) $G_0 \sim G_4$ 의 DNA를 추출하고 각각 원심 분리하여 상층 ($^{14}N^{-14}N$), 중층($^{14}N^{-15}N$), 하층($^{15}N^{-15}N$)에 존재하는 이중 나선 DNA의 상대량을 확인한다.
- (라) 표는 각 세대별로 전체 DNA 중 특정 DNA가 차지하는 비율을 나타낸 것이다. A~C는 각각 상층(¹⁴N-¹⁴N), 중층(¹⁴N-¹⁵N), 하층(¹⁵N-¹⁵N) 중 하나이다.

구분 세대	G_0	G_1	G ₂	G ₃	G ₄
A	0	1	0.5	?	?
В	0	0	9	?	(L)
С	1	0	?	?	

이 실험에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. [3점] [170912]

---<보 기>-

- ㄱ. 은 0.5이다.
- L. L과 C의 합은 1이다.
- C. ¹⁴N는 DNA의 구성 성분 중 5 탄당에 존재한다.

- 4. 다음은 DNA 복제에 대한 실험이다.
 - □과 □은 ¹⁴N가 들어 있는 배양액과 ¹⁵N가 들어 있는 배양액을 순서 없이 나타낸 것이다.

[실험 과정]

- (가) 모든 DNA가 ¹⁴N와 ¹⁵N 중 하나로 표지된 대장균(G₀)을 □에서 배양하여 1 세대 대장균(G₁)을 얻고, G₁을 □으로 옮겨 배양하여 2 세대 대장균(G₂)와 3 세대 대장균(G₃)을 얻는다.
- (나) $G_0 \sim G_3$ 의 DNA를 추출하고 각각 원심 분리하여 상층 ($^{14}N-^{14}N$), 중층($^{14}N-^{15}N$), 하층($^{15}N-^{15}N$)에 존재하는 이중 나선 DNA의 상대량을 확인한다.

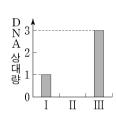
[실험 결과]

그림은 G₃의 DNA를 추출하여 원심 분리 D A
 하였을 때, ⓐ <u>상층</u>, ⓑ <u>중층</u>, 하층에 존재 A 1
 하는 DNA의 상대량을 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 돌연변이는 고려하지 않는다.) [3점] [200911]

- ¬. ⓐ와 ⓑ의 DNA에서 <mark>염기 T의 개수</mark>는 서로 같다.
- └. G₁의 DNA를 추출하여 원심 분리하였을 때 DNA는 중층 에만 존재한다.
- □ C₃을 □으로 옮겨 2회 연속 배양한 후 얻은 5세대 대장균 (C₅)의 DNA를 추출하여 원심 분리하였을 때, 전체 DNA 중 중층에 있는 DNA의 비율은 1/6 이다.

5. 다음은 DNA 복제에 대한 실험이다.


○ ¬과 □은 ¹⁴N가 들어 있는 배양액과 ¹⁵N가 들어 있는 배양액을 순서 없이 나타낸 것이다.

[실험 과정]

- (가) 모든 DNA가 ¹⁴N로 표지된 대장균 A(G₀)와 모든 DNA가 ¹⁵N로 표지된 대장균 B(G₀)를 같은 수로 준비한다. A와 B의 DNA는 염기 서열이 동일하다.
- (나) A(G₀)와 B(G₀)를 각각 ⊙에서 배양하여 1세대 대장균(G₁), 2세대 대장균(G₂), 3세대 대장균(G₃)을 얻는다.
- (다) B를 이용하여 얻은 G_3 을 으로 옮겨 배양하여 4세대 대장균(G_4)과 5세대 대장균(G_5)을 얻는다.
- (라) A를 이용하여 얻은 G_3 과 B를 이용하여 얻은 G_4 를 모두 섞은 후 DNA를 추출하고 원심 분리하여 상층($^{14}N-^{14}N$), 중층($^{14}N-^{15}N$), 하층($^{15}N-^{15}N$)에 존재하는 이중 나선 DNA의 상대량을 확인한다.

[실험 결과]

○ 그림은 (라) 과정을 통해 얻은 결과를 N 3 나타낸 것이다. I~Ⅲ은 각각 상층, 중층, A 2 상층 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 돌연변이는 고려하지 않는다.) (역배점 문항) [210616]

- □. I 에는 B를 이용하여 얻은 G₄의 DNA가 존재한다.
- ㄴ. Ⅲ에는 ¹⁵N로 표지된 DNA가 존재한다.
- 다. B를 이용하여 얻은 G 의 DNA를 추출하여 원심 분리하였을 때 DNA는 중층과 하층에 존재한다.

-<메 모>-

CODE #2. - Neurospora Experiment

1. 그림은 붉은빵곰팡이에서 아르지닌이 합성되는 과정을, 표는 최소 배지에 물질 ③ 또는 ⓒ의 첨가에 따른 붉은빵곰팡이 야생형과 돌연변이주 I 과 Ⅱ의 생장 여부와 물질 ⓒ의 합성 여부를 나타낸 것이다. I 은 유전자 $a\sim c$ 중 어느 하나에 돌연변이가 일어나고, Ⅱ는 그 나머지 유전자 중 하나에 돌연변이가 일어난 것이다. ⑤~ⓒ은 각각 오르니틴, 시트룰린, 아르지닌 중 하나이다.

전구 물질
유전자 <i>a</i> → 효소 A ────↓
오르니틴
유전자 <i>b</i> → 효소 B ─────
시트룰린
유전자 $c \rightarrow$ 효소 $C \longrightarrow \downarrow$
아르지닌

	-1.4		-1.4	"-1 0	-14	·
구분	최소	배지	최소 배지, 🗇		최소 배지, ①	
1 년	쌍	□합성	생장	□합성	생장	□합성
야생형	+	0	+	0	+	0
I	-	×	+	0	+	×
П	_	0	_	0	+	0
(+: 생장한 -: 생장 모한						

○: 합성됨, ×: 합성 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [171119]

-----<! ユランー

- ㄱ. Ⅱ는 *b*에 돌연변이가 일어난 것이다.
- ㄴ. ⑤을 합성하는 효소는 A이다.
- ㄷ. 🖒은 아르지닌이다.

2. 그림은 붉은빵곰팡이에서 아르지닌이 합성되는 과정을, 표는 최소 배지에 물질 ¬~□의 첨가에 따른 붉은빵곰팡이 야생형과 돌연변이주 I~IV의 생장 여부를 나타낸 것이다. 돌연변이주 I~III은 유전자 a~c 중 하나에만, IV는 a~c 중 두 개의 유전자에 돌연변이가 일어난 것이다. ¬~□은 각각 오르니틴, 시트룰린, 아르지닌 중 하나이다.

유전자 <i>a</i> → 효소 A-	전구 물질
유전자 <i>b</i> → 효소 B-	오르니틴
유전자 <i>c</i> → 효소 C-	│ 시트룰린 │ ───────── │ 아르지닌 │

구분	야생형	I	П	Ш	IV
최소 배지	+	_	_	_	_
최소 배지+①	+	_	+	+	+
최소 배지+①	+	_	+	_	_
최소 배지+🗅	+	+	+	+	+

(+:생장함, -:생장 못함)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (역배점 문항) [180913]

- ㄱ. 효소 B의 기질은 つ이다.
- ㄴ. ⓒ은 아르지닌이다.
- □. IV는 a와 b 모두에 돌연변이가 일어난 것이다.

과학탐구 영역

생명과학Ⅱ 5

3. 다음은 붉은빵곰팡이의 유전자 발현에 대한 자료이다.

야생형에서 아르지닌이 합성되는 과정은 그림과 같다.

- 돌연변이주 I 과 II는 각각 유전자 a와 b 중 하나에만 돌연변이가 일어난 것이다.
- 야생형, I, Ⅱ를 각각 최소 배지, 최소 배지에 물질 ①이 첨가된 배지, 최소 배지에 물질 ②이 첨가된 배지에서 배양 하였을 때, 생장 여부와 물질 ②의 합성 여부는 표와 같다.
 ①~ⓒ은 오르니틴, 시트룰린, 아르지닌을 순서 없이 나타낸 것이다.

구분	최소	: 배지	최소 배지, 🗇		최소 배지, 🗅	
1	생장	🖒 합성	생장	🖒 합성	생장	🖒 합성
야생형	+	0	+	0	+	0
I	_	×	+	0	_	×
П	-	×	+	0	+	0

(+: 생장함, 一: 생장 못함, ○: 합성됨, ※: 합성 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점] [191108]

---<보 기>--

- ㄱ. ઃ은 시트룰린이다.
- ㄴ. 효소 B의 기질은 ♡이다.
- 다. Ⅱ는 a에 돌연변이가 일어난 것이다.

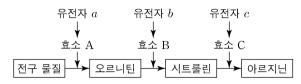
4. 그림은 붉은빵곰팡이에서 아르지닌이 합성되는 과정을, 표는 최소 배지에 물질 ①의 첨가에 따른 붉은빵곰팡이 야생형과 돌연변이주 I ~Ⅲ의 생장 여부와 물질 Û과 ⓒ의 합성 여부를 나타낸 것이다. I은 유전자 *a*~*c* 중 어느 하나에, Ⅱ는 나머지 두 유전자중 어느 하나에만, Ⅲ은 그 나머지 하나에 돌연변이가 일어난 것이다. ①~ⓒ은 오르니틴, 시트룰린, 아르지닌을 순서 없이 나타낸 것이다.

유전자 <i>a</i> → 효소 A-	전구 물질
유전자 <i>b</i> → 효소 B-	오르니틴
유전자 <i>c</i> → 효소 C =	시트룰린 ↓ 아르지닌

	Ž	희소 배지	:	최소 배지, 🗇		
구분	생장	() 합성	^厂 합성	생장	<u></u> 합성	(L) 합성
야생형	+	0	0	+	0	0
I	_	×	0	-	×	0
П	_	×	(가)	+	0	0
Ш	_	×	×	+	0	×

(+: 생장함, -: 생장 못함, ○: 합성됨, ×: 합성 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점] [200611]


---<보 기>-

- ㄱ. (가)는 '×'이다.
- ㄴ. I은 *c*에 돌연변이가 일어난 것이다.
- 다. D은 오르니틴이다.

과학탐구 영역

5. 다음은 붉은빵곰팡이의 유전자 발현에 대한 자료이다.

ㅇ 야생형에서 아르지닌이 합성되는 과정은 그림과 같다.

- 돌연변이주 I 은 유전자 $a\sim c$ 중 어느 하나에, II는 그 나머지 유전자 중 하나에만 돌연변이가 일어난 것이다.
- 야생형, I, Ⅱ를 각각 최소 배지, 최소 배지에 물질 ①이 첨가된 배지, 최소 배지에 물질 ①이 첨가된 배지에서 배양하였을 때, 생장 여부와 물질 ⓒ의 합성 여부는 표와 같다. ①~ⓒ은 오르니틴, 시트룰린, 아르지닌을 순서 없이 나타낸 것이다.

그ㅂ	최소	배지	최소 배지, 🗇 최소		최소 ㅂ	배지, 🕒	
구분	생장	ᡦ합성	생장	ᡦ합성	생장	□합성	
야생형	+	0	+	0	+	0	
I	_	?	+	0	_	0	
П	_	×	+	×	_	×	

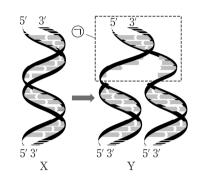
(+: 생장함, -: 생장 못함, ○: 합성됨, ×: 합성 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) (역배점 문항) [210914]

―<보 기>-

- ㄱ. ઃ은 시트룰린이다.
- ㄴ. ઃ은 효소 B의 기질이다.
- □. I은 최소 배지에 □을 첨가하여 배양하였을 때 생장한다.

<메 모>	


과학탐구 영역

생명과학Ⅱ

7

CODE #3. - Base Composition Calculation

1. 그림은 대장균의 DNA X가 복제되는 과정을 모식적으로 나타낸 것이다. 그림에서 Y는 X가 50% 복제되었을 때의 DNA이다. 표는 Y의 특성을 나타낸 것이다.

- Y를 구성하는 뉴클레오타이드는 모두 2400개이다.
- Y에서 새로 합성된 DNA 가닥의 G+C 함량은 35%이고, Y에서 복제되지 않은 부분 ①의 G+C 함량은 45%이다.

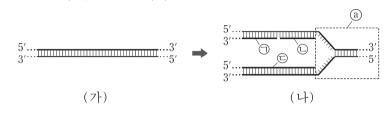
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 지연 가닥과 선도 가닥의 복제된 길이는 동일하다.) (역배점 문항) [151110]

一<보 기>-

- □. X를 구성하는 뉴클레오타이드는 1600 개이다.
- ㄴ. 복제 과정에서 에너지가 사용된다.
- ㄷ. X에서 $\frac{A+T}{G+C}$ 는 1.5이다.

2. 다음은 DNA X, DNA Y, mRNA Z에 대한 자료이다.

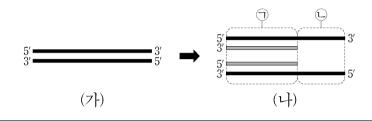
- 이중 가닥 DNA X와 Y는 각각 300개의 염기쌍으로 이루 어져 있다.
- X와 Y 중 하나로부터 Z가 전사되었고, Z는 300 개의 염기로 이루어져 있다.
- X는 단일 가닥 X₁과 X₂로, Y는 단일 가닥 Y₁과 Y₂로 이루 어져 있다.
- \circ X에서 $\frac{A+T}{G+C} = \frac{3}{2}$ 이고, Y에서 $\frac{A+T}{G+C} = \frac{3}{7}$ 이다.
- X₁에서 구아닌(G)의 비율은 16 %이고, 피리미딘 염기의 비율은 52 %이다.
- Y₁에서 사이토신(C)의 비율은 30%이다.
- Y₂에서 아데닌(A)의 비율은 12%이다.
- Z에서 G의 비율은 16%이다.

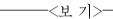

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (역배점 문항) [171112]

-<보 기>-

- ㄱ. Z가 만들어질 때 주형으로 사용된 DNA 가닥은 X₁이다.
- 니. 염기 간 수소 결합의 총개수는 X가 Y보다 90개 적다.
- Γ . X_1 의 G 개수 $+ X_2$ 의 A 개수 $+ Y_2$ 의 C 개수 = 252 개이다.

과학탐구 영역


- 3. 다음은 어떤 세포에서 일어나는 DNA X의 복제에 대한 자료이다.
 - 그림 (가)는 DNA X를, (나)는 X가 복제되는 과정의 일부를 나타낸 것이다.
 - (나)에서 염기의 개수는 1600 개이고, 그중 유라실(U)의 개수는 5개이다. ①~ⓒ은 새로 합성된 가닥이다.
 - ⓐ <u>(나)에서 복제되지 않은 부분</u>의 염기 개수는 X의 염기 개수의 40 %이다.
 - (나)에서 ①의 염기 개수와 ①의 염기 개수의 합은 ⓒ의 염기 개수와 같으며, ⓒ의 G+C 함량은 40%이고, ⓐ의 G+C 함량은 60%이다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [180914]

- ㄱ. (가)에서 $\frac{A+T}{G+C} = \frac{13}{12}$ 이다.
- ㄴ. (나)에서 타이민(T)의 개수는 435개이다.
- □ □이 □보다 먼저 합성되었다.

- 4. 다음은 어떤 세포에서 일어나는 DNA X의 복제에 대한 자료이다.
 - 그림 (가)는 이중 가닥 DNA X를, (나)는 X가 복제되는 과정의 일부를 나타낸 것이다.
 - (나)는 ① <u>복제된</u> 부분과 <u>○ 복제되지 않은 부분을</u> 나타낸 것이며, ①은 새로 합성된 가닥과 그에 대한 상보적인 주형 가닥을 포함한다.
 - ①에서 새로 합성된 가닥의 G+C 함량은 40%이다.
 - ○의 염기 개수는 X의 염기 개수의 40%이다.
 - □에서 A+T 함량은 60%이다.
 - ⓒ에서 구아닌(G)의 개수는 180개이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [210913]

- □. X에서 G+C 함량은 40%이다.
- ㄴ. ①의 염기 개수는 2700 개이다.
- □ ○에서 사이토신(C) 개수 + 타이민(T) 개수 = 450 개이다.

5. 다음은 DNA X, DNA Y, mRNA Z에 대한 자료이다.

- 이중 가닥 DNA X는 서로 상보적인 단일 가닥 X₁과 X₂로, 이중 가닥 DNA Y는 서로 상보적인 단일 가닥 Y₁과 Y₂로 구성되어 있다. X와 Y의 염기 개수는 같다.
- X와 Y 중 하나로부터 Z가 전사되었고, 염기 개수는 X가 Z의 2 배이다.
- X₁에서 아데닌(A)의 개수는 210 개이다.
- $\circ X_2$ 에서 $\frac{\pi \text{린 계열 염기의 개수}}{\text{피리미딘 계열 염기의 개수}} = \frac{2}{3}$ 이고, 사이토신(C)의 개수는 150 개이다.
- Y₁에서 구아닌(G)의 개수는 90 개이다.
- Z에서 유라실(U)의 개수는 120개이고, 퓨린 계열 염기의 개수는 피리미딘 계열 염기의 개수보다 120개 많다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) (역배점 문항) [211116]

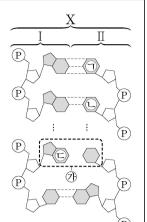
- □. Y에서 사이토신(C)의 개수는 240개이다.
- ㄴ. Z가 만들어질 때 주형으로 사용된 DNA 가닥은 X₁이다.
- 다. 염기 간 수소 결합의 총개수는 X에서가 Y에서보다 30개 적다.

6. 다음은 이중 가닥 DNA *x*와 mRNA *y*에 대한 자료이다.

- x는 서로 상보적인 단일 가닥 x₁과 x₂로 구성되어 있다.
- $\circ x_1$ 과 x_2 중 하나로부터 y가 전사되었고, 염기 개수는 x가 y의 2 배이다.
- $\circ x$ 에서 $\frac{G+C}{A+T} = \frac{3}{2}$ 이고, y에서 사이토신(C)의 개수는 구아닌(G)의 개수보다 많다.
- 표는 x₁, x₂, y를 구성하는 염기 수를 나타낸 것이고, ①~□은 A, C, G, T, U를 순서 없이 나타낸 것이다.

ᄀᆸ	염기 수					
구분	\bigcirc	Ĺ.	Œ	包	□	
χ_1	?	24	?	0	?	
χ_2	?	(b)	37	0	?	
У	a	?	?	16	37	

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) (역배점 문항) [221116]


----<보 기>-

- ¬. ⓐ+ⓑ = 16이다.
- ㄴ. ⓒ은 구아닌(G)이다.
- C. x를 구성하는 염기쌍의 개수는 120개이다.

과학탐구 영역

7. 다음은 이중 가닥 DNA X에 대한 자료이다.

○ 그림은 서로 상보적인 단일 가닥 I과 II로 구성된 X를 나타낸 것이다. ①~ⓒ은 각각 구아닌(G), 사이토신(C), 아데닌(A), 타이민(T) 중 하나이다. ①에는 염기 사이의 수소 결합 수를 표시하지 않았다.

$$\circ$$
 X에서 $\frac{G+C}{A+T} = \frac{2}{3}$ 이다.

$$\circ$$
 I에서 $\frac{C}{\bigcirc} = \frac{3}{5}$ 이다.

○ Ⅱ에서 ③의 개수는 20개이고, ⓒ의 개수는 18개이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [230612]

-----<보 기>-

- ㄱ. ⓒ은 구아닌(G)이다.
- ㄴ. I에서 타이민(T)의 개수는 12개이다.
- 다. X에서 뉴클레오타이드의 총개수는 160개이다.

영역	
	-<메 모>

CODE #4. - Lac Operon Inference

- 1. 다음은 결실이 일어난 돌연변이 대장균 Ⅰ~Ⅲ에 대한 자료이다.
 - I ~ Ⅲ에서 결실된 DNA 부위는 각각 젗당 오페론의 구조 유전자, 젗당 오페론의 작동 부위, 젗당 오페론을 조절하는 조절 유전자 중 하나이다.
 - 표는 야생형 대장균과 I ~Ⅲ을 서로 다른 배지에서 배양 할 때, 조절 유전자로부터 발현되는 억제 단백질에 대한 자료를 나타낸 것이다.

7 8		·백질과 도체)의 결합	억제 단 작동 부위	
구분 	포도당이 없고 젖당이 있는 배지		포도당이 없고 젖당이 있는 배지	
야생형		×	×	0
I	×	×	×	?
П	0	×	?	×
Ш	?	×	?	0

(○:결합함, ×:결합 못함)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점] [160913]

-----<보 기>--

- □. 야생형 대장균은 포도당이 없고 젖당이 있는 배지에서 젖당 분해 효소를 생성한다.
- L. I은 포도당과 젖당이 없는 배지에서 젖당 분해 효소를 생성한다.
- ㄷ. Ⅲ은 구조 유전자가 결실된 대장균이다.

- 2. 다음은 야생형 대장균과 돌연변이 대장균에 대한 자료이다.
 - 대장균 I과 Ⅱ는 각각 젖당 오페론의 프로모터가 결실된 돌연변이와 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이 중 하나이다.
 - 표는 야생형 대장균, I, Ⅱ를 포도당이 없고 젖당이 있는 배지에서 각각 배양할 때, 조절 유전자로부터 발현되는 억제 단백질과 젖당(젖당 유도체)의 결합, 젖당 오페론의 프로모터와 RNA 중합 효소의 결합에 대한 자료이다.

구분	억제 단백질과 젖당(젖당 유도체)의 결합	프로모터와 RNA 중합 효소의 결합
야생형	0	0
I	?	×
П	×	0

(○:결합함,×:결합 못함)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점] [161113]

--<보 기>-

- □. I은 포도당이 없고 젖당이 있는 배지에서 젖당 오페론을 조절하는 억제 단백질을 생성한다.
- □. Ⅱ는 포도당이 없고 젖당이 있는 배지에서 젖당 분해 효소를 생성한다.
- 다. 젖당 분해 효소의 아미노산 서열은 프로모터에 암호화되어 있다.

과학탐구 영역

- 3. 다음은 대장균 Ⅰ~Ⅲ의 젖당 오페론 조절에 대한 자료이다.
 - I ~ Ⅲ은 야생형 대장균, 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이 대장균, 젖당 오페론의 프로모터가 결실된 돌연변이 대장균을 순서 없이 나타낸 것이다.
 - 배지 ③과 ⑥은 포도당과 젖당이 없는 배지와, 포도당은 없고 젖당이 있는 배지 중 하나이다.
 - I은 ¬에서 젖당 오페론의 구조 유전자를 발현하지 않는다.
 - Ⅱ는 □에서 젖당 오페론의 구조 유전자를 발현한다.
 - Ⅲ은 ⓒ에서 억제 단백질을 생성하지 않는다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점] [180619]

-----<보 기>---

- □. Ⅰ은 □에서 억제 단백질을 생성한다.
- 니. Ⅱ는 ⓒ에서 젖당(젖당 유도체)과 결합한 억제 단백질을 갖는다.
- 다. Ⅲ은 ⊙과 ⓒ에서 모두 젖당 분해 효소를 생성한다.

- 4. 다음은 야생형 대장균과 돌연변이 대장균에 대한 자료이다.
 - 대장균 I~Ⅲ은 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이, 젖당 오페론의 프로모터가 결실된 돌연변이, 젖당 오페론의 작동 부위가 결실된 돌연변이를 순서 없이 나타낸 것이다.
 - 표는 야생형 대장균과 I ~ III을 포도당은 없고 젖당이 있는 배지에서 각각 배양할 때의 자료이다. ① ~ □은 억제 단백질과 젖당(젖당 유도체)의 결합, 젖당 오페론의 프로모터와 RNA 중합 효소의 결합, 억제 단백질과 작동 부위의 결합을 순서 없이 나타낸 것이다.

구분	7	Ĺ.	Œ	젖당 분해 효소의 생성	
야생형	0	×	0	생성됨	
I	0	×	0	생성됨	
П	×	a	0	생성됨	
Ш	?	?	(b)	생성 안 됨	

(○:결합함, ×:결합 못함)

이 자료에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점] [181119]

-----<보 기>----

- 기. I은 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이이다.
- ㄴ. □은 '억제 단백질과 젖당(젖당 유도체)의 결합'이다.
- 다. ⓐ와 ⓑ는 모두 '×'이다.

- 5. 다음은 야생형 대장균과 돌연변이 대장균에 대한 자료이다.
 - 대장균 I과 Ⅱ는 절당 오페론을 조절하는 조절 유전자가 결실된 돌연변이와 젖당 오페론의 프로모터가 결실된 돌연변이를 순서 없이 나타낸 것이다.
 - 표는 야생형 대장균, I, Ⅱ를 서로 다른 배지에서 각각 배양할 때의 자료이다. ⓐ~ⓒ는 억제 단백질과 젖당(젖당 유도체)의 결합, 억제 단백질과 작동 부위의 결합, 젖당 분해 효소의 생성을 순서 없이 나타낸 것이다.

구분	포도당과 젖당이 없는 배지 a b		포도당은 없고 젖당이 있는 !	
十七			a	©
야생형	0	×	×	0
I	?	×	?	×
П	×	×	×	(1)

(○ : 결합함 또는 생성됨, × : 결합 못함 또는 생성 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) (역배점 문항) [190620]

----<보 기>---

- 기. I 은 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이이다.
- L. ⓐ는 '억제 단백질과 작동 부위의 결합'이다.
- 다. ①은 'O'이다.

- 6. 다음은 야생형 대장균과 돌연변이 대장균에 대한 자료이다.
 - 대장균 I과 Ⅱ는 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이와 젖당 오페론의 프로모터가 결실된 돌연 변이를 순서 없이 나타낸 것이다.
 - 표는 야생형 대장균과 I 과 Ⅱ를 서로 다른 배지에서 각각 배양할 때의 자료이다. (가)와 (나)는 포도당은 없고 젖당이 있는 배지와 포도당과 젖당이 없는 배지를 순서 없이 나타낸 것이다. □과 ⓒ은 억제 단백질과 젖당(젗당 유도체)의 결합, 젖당 오페론의 프로모터와 RNA 중합 효소의 결합을 순서 없이 나타낸 것이다.

	(가)			(나)		
구분	9	및 젖당 분해 효소 생성		9	Ĺ)	젖당 분해 효소 생성
야생형	0	?	+	?	×	_
I	×	(a)	?	×	?	+
П	?	×	_	?	×	?

(〇: 결합함, X: 결합 못함, 十: 생성됨, 一: 생성 안 됨)

이 자료에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점] [200619]

-----<보 기>----

- ㄱ. @는 '○'이다.
- ㄴ. ▷은 '억제 단백질과 젖당(젖당 유도체)의 결합'이다.
- 다. I은 (나)에서 억제 단백질을 생성한다.

과학탐구 영역

- 7. 다음은 야생형 대장균과 돌연변이 대장균 Ⅰ~Ⅲ에 대한 자료이다.
 - I과 Ⅱ는 각각 젖당 오페론의 프로모터, 젖당 오페론의 작동부위, 젖당 오페론을 조절하는 조절 유전자 중 1개가 결실된 돌연변이이고, Ⅲ은 이 중 2개가 결실된 돌연변이이다.
 - 표는 야생형 대장균과 I ~ Ⅲ을 포도당은 없고 젖당이 있는 배지에서 각각 배양할 때의 자료이다. ⑦~ⓒ은 억제 단백질과 젖당(젖당 유도체)의 결합, 젖당 오페론의 프로모터와 RNA 중합 효소의 결합, 억제 단백질과 작동 부위의 결합을 순서 없이 나타낸 것이다.

구분	9	Ĺ.	Œ	젖당 분해 효소
야생형	0	0	×	생성됨
I	×	?	a	생성됨
П	0	?	?	생성됨
Ш	?	9	2	생성됨

(○: 결합함, X: 결합 못함)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) (역배점 문항) [200912]

--<보 기>-

- ㄱ. @는 '○'이다.
- ㄴ. □은 '억제 단백질과 젖당(젖당 유도체)의 결합'이다.
- □ 작동 부위와 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이이다.

<메 모>	

과학탐구 영역

생명과학Ⅱ 15

CODE #5. - Transcription Factor Inference

- 1. 다음은 유전자 A와 B의 전사 조절에 관한 자료이다.
 - A와 B는 각각 서로 다른 1개의 전사 인자에 의해 전사가 촉진된다.
 - \circ A는 단백질 α 를, B는 단백질 β 를 암호화한다. α 와 β 중하나만이 전사 인자이다. 이 전사 인자는 A와 B 중하나의 전사를 촉진한다.
 - A의 전사를 촉진하는 전사 인자는 전사 인자 결합 예상 부위 ②~ⓒ 중 하나에만, B의 전사를 촉진하는 전사 인자는 전사 인자 결합 예상 부위 ⑥~⑧ 중 하나에만 결합한다.

a b c		A
	프로	그터
(d) (e) (f) (g)		В

○ ②~⑧가 모두 존재하는 경우인 (가)와 그 일부가 제거된 경우인 (나)~(마)에서 각각 전사되는 A와 B의 mRNA 상대량은 아래의 그림과 같다.

구분	(가)	(나)	(다)	(라)	(마)
제거된 부위	없음	(e), (f)	a, b, d	©	e, g
A와 B의 mRNA 상대량		1 0 A B	1 A B	1 - 0 A B	1 0 A B

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 돌연변이는 고려하지 않는다.) [3점] [150620]

-----<보 기>----

- \neg . β 는 ⓒ에 결합하는 A의 전사 인자이다.
- ㄴ. (마)에는 B의 전사를 촉진하는 전사 인자가 존재한다.
- 다. ⓐ∼® 중 ⓓ와 ⓔ가 동시에 제거되었을 때 B의 전사가 억제된다.

- **2.** 다음은 어떤 동물의 세포 $I \sim \coprod$ 에서 유전자 w, x, y, z의 전사 조절에 대한 자료이다.
 - w, x, y, z의 프로모터와 전사 인자 결합 부위 A, B, C는 그림과 같다.

A B	프로모터	유전자 w
A C	프로모터	유전자 x
A C	프로모터	유전자 y
B C	프로모터	유전자 <i>z</i>

- w, x, y, z의 전사에 관여하는 전사 인자는 □, □, □이다.
 □은 A에만 결합하며, □은 B와 C 중 어느 하나에만 결합하고 □은 그 나머지 하나에 결합한다.
- w, x 각각의 전사는 각 유전자의 전사 인자 결합 부위 모두에 전사 인자가 결합했을 때 촉진된다. y, z 각각의 전사는 각 유전자의 전사 인자 결합 부위 중 하나에만 전사 인자가 결합 해도 촉진된다.
- I 에서 *x*의 전사가 촉진된다.
- □ 에서 y의 전사가 촉진되며, □~□ 중 □만 발현된다.
- I ~ III 중 w의 전사는 III에서만 촉진된다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [170620]

----<보 기>-

- ㄱ. ▷은 C에 결합한다.
- \cup . I 에서 y의 전사와 z의 전사가 모두 촉진된다.
- 다. w, x, y, z 중 $I \sim \square$ 모두에서 전사가 촉진되는 유전자는 2개이다.

과학탐구 영역

- **3.** 다음은 어떤 동물의 세포 $I \sim IIII에서 유전자 <math>x, y, z$ 의 전사 조절에 대한 자료이다.
 - x, y, z는 각각 전사 인자
 X, Y, Z를 암호화하며,
 x, y, z의 프로모터와
 전사 인자 결합 부위 A, B,
 C, D는 그림과 같다.

AB			프로모터	유전자 x
A	C	D	프로모터	유전자 y
В	С		프로모터	유전자 z

- *x*, *y*, *z*의 전사에 관여하는 전사 인자는 ⑦, ℂ, ℂ, ⓒ이다. ⑦은 A에만, ℂ은 B에만 결합하며, ℂ은 C와 D 중 어느하나에만 결합하고, ⓒ은 그 나머지 하나에 결합한다.
- x의 전사는 전사 인자가 A와 B 중 하나에만 결합해도 촉진 되고, z의 전사는 전사 인자가 B와 C 중 하나에만 결합해도 촉진된다. y의 전사는 A에 전사 인자가 결합하고 동시에 다른 전사 인자가 C와 D 중 하나에만 결합해도 촉진된다.
- I 과 Ⅲ에서는 각각 X~Z 중 2가지만 발현되고, Ⅱ에서는 X~Z 중 적어도 하나가 발현된다.
- Ⅱ에서는 ⑦~② 중 ⓒ만 발현된다.
- Û은 I에서 발현되지 않고, □은 Ⅲ에서 발현되지 않는다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [171116]

- ㄱ. Ⅰ에서는 ⓒ이 발현되지 않는다.
- ㄴ. Ⅲ에서는 ⓒ이 발현된다.
- 다. ②의 결합 부위는 D이다.

- 4. 다음은 어떤 동물의 초기 발생에서 유전자 w, y의 전사 조절에 대한 자료이다.
 - 유전자 *a*, *b*, *c*는 각각 전사 인자 A, B, C를 암호화하며, A, B, C는 *w*, *y*의 전사 촉진에 관여한다.
 - 세포 (가)에서는 y의 전사가 일어나며, 세포 (나)에서는 w와 y의 전사가 모두 일어나고, 세포 (다)에서는 w의 전사는 일어나고 y의 전사는 일어나지 않는다.
 - (가)에서는 *a*, *c*만 발현되고, (나)에서는 *a*, *b*, *c*가 모두 발현 되고, (다)에서는 *a*, *b*만 발현된다.
 - 표는 (가), (나), (다)에서 *a*, *b*, *c* 각각의 발현을 인위적으로 억제할 때, *w*, *y*의 전사 여부를 나타낸 것이다.

세포	(フト)	(나)			(τ	十)
억제된 유전자	а	а	b	С	а	b
w	×	×	×	0	1	×
У	×	0	0	×	×	Ū.
			(O . TJ		. The	OL EI)

(○:전사됨, ×:전사 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, A~C 이외의 다른 전사 인자는 고려하지 않는다.)

(역배점 문항) [180620]

----<보 기>-

- ㄱ. ③과 ⓑ은 모두 '×'이다.
- 나. w의 전사가 일어나려면 A와 B가 모두 필요하다.
- 다. (7)에서 c의 발현을 인위적으로 억제하면 y의 전사가 일어나지 않는다.

과학탐구 영역

생명과학 Ⅱ 17

- 5. 다음은 유전자 x와 y의 전사 조절에 대한 자료이다.
 - *x*는 단백질 X를, *y*는 단백질 Y를 암호화하며, *x*와 *y*는 각각 서로 다른 1 개의 전사 인자에 의해 전사가 촉진된다.
 - \circ X와 Y 중 하나만이 전사 인자이고, 이 전사 인자는 x와 y 중 하나의 전사를 촉진한다. X는 x의 전사를 촉진하지 않고, Y는 y의 전사를 촉진하지 않는다.
 - x와 y의 프로모터와 전사
 [A B C D] 프로모터 유전자 x]

 인자 결합 예상 부위 A~H는
 [E F G H] 프로모터 유전자 y]
 - x의 전사는 전사 인자가 A~D 중 ① 연속된 두 부위에 결합하는 경우에만 촉진되고, y의 전사는 전사 인자가 E~H 중 한 부위에 결합하는 경우에만 촉진된다.
 - A~H의 제거 여부에 따른 조건 (가)~(마)에서 전사가 촉진되는 유전자는 표와 같다.

조건	(フト)	(나)	(다)	(라)	(마)
제거된 부위	없음	D, G, H	A, B, E	A, F	C, E, F
전사가 촉진되는 유전자	<i>x</i> , <i>y</i>	없음	y	x, y	?

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 전사 인자 결합 예상 부위의 제거 이외의 다른 요인은 전사 인자의 작용에 영향을 주지 않는다.) [3점] [190616]

-----<보 기>-

- ㄱ. ⑦은 D를 포함한다.
- 나. (다)에는 x의 전사를 촉진하는 전사 인자가 존재한다.
- 다. (마)에서는 *y*의 전사가 촉진된다.

- **6.** 다음은 어떤 동물의 세포 $I \sim V$ 에서 유전자 w, x, y, z의 전사 조절에 대한 자료이다.
 - *w*, *x*, *y*, *z*는 각각 전사 인자 W, 효소 X, 효소 Y, 효소 Z를 암호화한다. *w*~*z*가 전사되면 W~*Z*가 합성된다.
 - 유전자 (가), (나), (다), (라)의
 A B D 프로모터 유전자(가)

 프로모터와 전사 인자 결합
 B C D 프로모터 유전자(나)

 부위 A, B, C, D는 그림과 같다.
 A D 프로모터 유전자(라)
 - (가)~(라)는 *w~z*를 순서 없이 나타낸 것이고, *w~z*의 전사에 관여하는 전사 인자는 W, ③, ⓒ, ⓒ이다. ⑤은 A에만, ⓒ은 B에만, ⓒ은 C에만, W는 D에만 결합한다.
 - $\circ w \sim z$ 의 전사는 전사 인자가 $A \sim D$ 중 하나에만 결합해도 촉진된다.
 - 표는 세포 I~V에서 w~z의
 전사 여부를 나타낸 것이다.
 Ⅱ~V는 I에 W, ①, ②, ② 중
 각각 서로 다른 1가지를
 넣어준 세포이다.

세포 유전자	I	П	Ш	IV	V
w	×	0	0	×	×
X	×	0	×	×	0
У	×	a	0	0	0
Z	×	0	0	0	×
(○: 전사됨, ★: 전사 안 됨)					

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 돌연변이는 고려하지 않는다.) (역배점 문항) [190915]

-----<보 기>--

- ㄱ. @는 '×'이다.
- ㄴ. 유전자 (가)는 *z*이다.
- ㄷ. V는 I에 W를 넣어준 세포이다.

과학탐구 영역

- **7.** 다음은 어떤 동물의 세포 I 에서 유전자 *x*, *y*, *z*의 전사 조절에 대한 자료이다.
 - \circ x, y, z는 각각 전사 인자 X, 전사 인자 Y, 효소 Z를 암호화하며, $x \sim z$ 가 전사되면 $X \sim Z$ 가 합성된다.
 - 이 유전자 (가), (나), z의 프로모터
 [A] B] C]
 프로모터 유전자 (가)

 와 전사 인자 결합 부위 A, B,
 [A] C]
 프로모터 유전자 (나)

 C, D는 그림과 같다.
 B
 D) 프로모터 유전자 z
 - (가)와 (나)는 각각 x와 y 중 하나이다. x~z의 전사에 관여하는 전사 인자는 X, Y, つ, ○이다. X는 B와 D 중 어느 하나에만 결합하고, Y는 그 나머지 하나에만 결합한다. ○은 A와 C 중 어느 하나에만 결합하고, ○은 그 나머지 하나에만 결합한다.
 - \circ (가)의 전사는 전사 인자가 $A \sim C$ 중 적어도 두 부위에 결합 해야 촉진되고, (나)와 z의 전사는 전사 인자가 $A \sim D$ 중
 - 하나에만 결합해도 촉진된다. 이 세포 I에서는 X~Z가 모두 발현
 - 되고, ③과 ⓒ 중 ①만 발현된다. ○ 세포 I에서 A~D의 제거 여부에 따른 *x~z*의 전사 결과는 표와 같다.

제거된 부위 유전자	A	В	С	D
X	0	0	?	0
У	0	×	×	0
Z	0	×	×	a
(○:전사됨, ×:전사 안 됨)				

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 전사 인자 결합 부위의 제거 이외의 다른 요인은 전사인자의 작용에 영향을 주지 않는다.) [3점] [211113]

----<보 기>-

- ㄱ. @는 '○'이다.
- ㄴ. 유전자 (나)는 *y*이다.
- ㄷ. 전사 인자 Y는 B에 결합한다.

- 8. 다음은 어떤 동물의 세포 $I \sim IV$ 에서 유전자 w, x, y, z의 전사 조절에 대한 자료이다.
 - 유전자 *a, b, c, d*는 각각 전사 인자 A, B, C, D를 암호화하며, A, B, C, D는 *w, x, y, z*의 전사 촉진에 관여한다.
 - \circ w의 전사는 b가 발현되고 동시에 c와 d 중 적어도 하나가 발현되어야 촉진된다.
 - x의 전사는 a와 c가 모두 발현되어야 촉진된다.
 - \circ y의 전사는 a가 발현되고 동시에 b와 d 중 적어도 하나가 발현되어야 촉진된다.
 - \circ z의 전사는 b와 c 중 적어도 하나가 발현되어야 촉진된다.
 - □에서는 b가 발현되지 않는다.
 - 표는 I ~IV에서 (가), (나),
 (다), z의 전사 여부를 나타낸
 것이다. (가)~(다)는 w~y를
 순서 없이 나타낸 것이다.

_ ,.				
구분	I	П	Ш	IV
(フト)	0	×	0	0
(나)	×	(a)	×	0
(다)	×	0	×	×
Z	×	0	0	0

(○:전사됨,×:전사 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 조건 이외는 고려하지 않는다.) (역배점 문항) [220911]

----<보 기>-

- ¬. (다)는 *x*이다.
- L. ⓐ는 '○'이다.
- 다. Ⅲ과 Ⅳ에서 모두 d가 발현된다.

- 9. 다음은 어떤 동물의 세포 $I \sim IV$ 에서 유전자 w, x, y, z의 전사 조절에 대한 자료이다.
 - \circ w, x, y, z는 각각 전사 인자 W와 효소 X, Y, Z를 암호화하며, $w \sim z$ 가 전사되면 $W \sim Z$ 가 합성된다.
 - 유전자 (가)~(라)의 프로모터와
 전사 인자 결합 부위 A~D는
 그림과 같다. (가)~(라)는
 w~z를 순서 없이 나타낸 것이다.

}	A	프로모터 유전자(가)
-	В	프로모터 유전자(나)
-	A C	프로모터 유전자(다)
}	A B I	D 프로모터 유전자(라)

- w~z의 전사에 관여하는 전사 인자는 W, □, □, □이다.
 □은 A에만, □은 B에만, □은 C에만, W는 D에만 결합한다.
- $\circ w \sim z$ 각각의 전사는 각 유전자의 전사 인자 결합 부위 모두에 전사 인자가 결합했을 때 촉진된다.
- 표는 세포 I~IV에서 w~z의 전사 여부를 나타낸 것이다. I은 ⑤~ⓒ이 모두 발현되는 세포이며, Ⅱ~IV는 각각 ⑤~ⓒ 중 서로 다른 1 가지만 발현되지 않는 세포이다.

Ι	П	Ш	IV
0	0	×	0
0	a	×	?
0	×	0	?
0	×	0	0
		OOaOXOX	0 0 x 0 a x 0 x 0

(○:전사됨,×:전사 안 돋

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 조건 이외는 고려하지 않는다.) [3점] [221110]

----<보 기>-

- ㄱ. @는 '×'이다.
- 나. (가)는 *z*이다.
- 다. IV는 ⓒ이 발현되지 않는 세포이다.

- - x의 프로모터와 전사 인자 결합 부위 A~C는 그림과 같다.

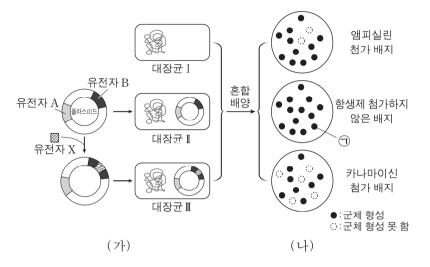
$A \mid B \mid C \mid$ 프로모터 유전자 x

- x의 전사에 관여하는 전사 인자는 ①, ①, ⓒ이다. ②은 A에만 결합하며, ②은 B와 C 중 어느 하나에만 결합하고, ⓒ은 그 나머지 하나에만 결합한다.
- \circ x의 전사는 전사 인자가 $A \sim C$ 중 적어도 두 부위에 결합했을 때 촉진된다.
- I ~Ⅲ 중 한 세포에서는 ⑦~ⓒ이 모두 발현되고, 나머지 두 세포에서는 각각 ⑦~ⓒ 중 2가지만 발현된다. Ⅱ에서는 ⓒ이 발현된다.
- I ~Ⅲ에서 A~C의 제거 여부에 따른 *x*의 전사 결과는 표와 같다.

제거된 부위	x의 전사				
부위	I	П	Ш		
없음	0	0	0		
A	0	×	0		
В	?	?	×		
С	0	0	a		

(○:전사됨, ×:전사 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 제시된 조건 이외는 고려하지 않는다.) [3점] [230616]

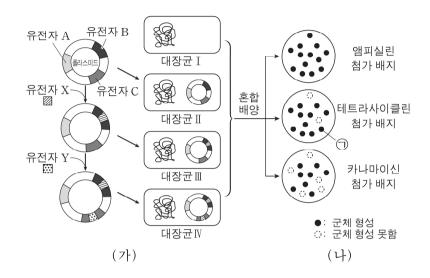

-----<보 기>-

- ㄱ. @는 '○'이다.
- ㄴ. ▷은 B에 결합한다.
- □. I 에서는 ⑦~ⓒ이 모두 발현된다.

과학탐구 영역

CODE #6. - Genetic Recombination Tech

1. 그림 (가)는 유전자 재조합 기술을 이용하여 대장균 I 로부터 대장균 Ⅱ와 Ⅲ을 얻는 과정을, (나)는 (가)의 대장균 I ~Ⅲ을 섞어 항생제를 첨가하지 않은 배지와 2 종류의 항생제 중 하나를 첨가한 각각의 배지에서 배양한 결과를 나타낸 것이다. Ⅲ은 유전자 X의 단백질을 생산하고, 유전자 A와 B는 각각 앰피실린 저항성 유전자와 카나마이신 저항성 유전자 중 하나이다. 동일한 대장균은 각 배지에서 동일한 위치에 존재한다.



이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [150918]

----<보 기>---

- □. Ⅱ는 카나마이신과 앰피실린을 함께 첨가한 배지에서 군체를 형성한다.
- ㄴ. X가 삽입된 유전자는 앰피실린 저항성 유전자이다.
- ㄷ. (나)에서 ⊙은 Ⅲ의 군체이다.

2. 그림 (가)는 유전자 재조합 기술을 이용하여 대장균 I 로부터 유전자 X의 단백질과 유전자 Y의 단백질을 모두 생산하는 대장균 IV를 얻는 과정을, (나)는 (가)의 대장균 I~IV를 섞어 3종류의 항생제 중 하나를 첨가한 각각의 배지에서 배양한 결과를 나타낸 것이다. 유전자 A~C를 각각 앰피실린 저항성 유전자, 카나마이신 저항성 유전자, 테트라사이클린 저항성 유전자 중 하나이다. 동일한 대장균은 각 배지에서 동일한 위치에 존재한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [151118]

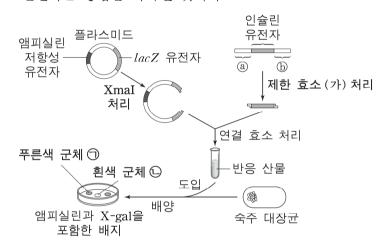
-----<보 기>----

- ㄱ. Y가 삽입된 위치는 카나마이신 저항성 유전자이다.
- ㄴ. (나)에서 ⑦은 X의 단백질을 생산한다.
- 다. A는 앰피실린 저항성 유전자이다.

3. 다음은 유전자 재조합 기술에 이용되는 제한 효소와 재조합 DNA가 도입된 대장균을 선별하는 방법에 대한 자료이다.

[제한 효소]

○ 표는 4가지 제한 효소의 인식 서열과 절단 위치를 나타낸 것이다.

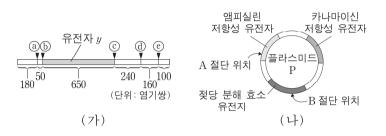

제한 효소	인식 서열과 절단 위치	제한 효소	인식 서열과 절단 위치
ApaI	5'-GGGCC C-3' 3'-C CCGGG-5'	PspOMI	5'-G GGCCC-3' 3'-CCCGG G-5'
NgoMIV	5′-GCCGGC-3′ 3′-CGGCCG-5′	XmaI	5'-C CCGGG-3' 3'-GGGCC C-5'

(i : 절단 위치)

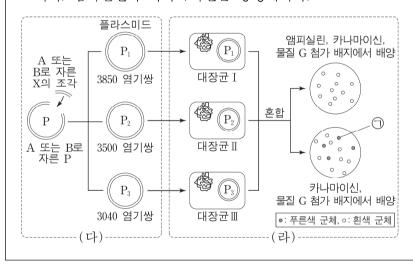
○ 제한 효소에 의해 형성된 DNA 조각 말단의 단일 가닥이 서로 상보적이면, DNA 조각은 연결 효소에 의해 연결된다.

[재조합 DNA가 도입된 대장균 선별 방법]

○ 그림은 인슐린 유전자가 재조합된 플라스미드를 갖는 대장균을 선별하는 방법을 나타낸 것이다.


- 표에 있는 각 제한 효소가 인식하는 서열은 ⓐ와 ⓑ 각각에 모두 있고 인슐린 유전자에는 없다.
- \circ lacZ 유전자의 산물은 X-gal을 분해하여 대장균 군체를 흰 색에서 푸른색으로 변화시킨다.

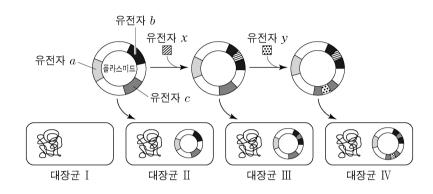
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [160918]


--<보 기>-

- ㄱ. ⑤과 Û은 모두 앰피실린에 대한 저항성이 있다.
- ㄴ. ⓒ은 인슐린 유전자가 재조합된 플라스미드를 갖는다.
- ㄷ. 心을 얻을 수 있는 제한 효소 (가)로는 표에서 2가지가 있다.

- 4. 다음은 유전자 재조합 기술에 이용되는 제한 효소와 재조합 DNA가 도입된 대장균을 선별하는 방법에 대한 자료이다.
 - 그림 (가)는 유전자 y가 들어 있는 DNA X를, (나)는 길이가 2800 염기쌍인 플라스미드 P를 나타낸 것이다. X의 ②~⑥는 각각 제한 효소 A 또는 B의 절단 위치이고, X를 A로 절단할 경우 3 개의, B로 절단할 경우 4 개의 DNA 조각이 생긴다. P에는 A와 B의 절단 위치가 각각 1 개씩 있다.

- 젖당 분해 효소 유전자의 산물은 물질 G를 분해하여 대장균 균체를 흰색에서 푸른색으로 변화시킨다.
- 그림 (다)에서 X를 A 또는 B로 절단하여 생성된 DNA 조각을 P에 삽입하여 만든 재조합 플라스미드 P₁, P₂, P₃의 염기쌍 3850, 3500, 3040 이다.
- 그림 (라)는 P₁~P₃을 각각 숙주 대장균에 도입하여 만든 대장균 I~Ⅲ을 혼합하여 서로 다른 배지에서 배양한 결과 이다. 앰피실린과 카나마이신은 항생제이다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, A로 절단한 부분과 B로 절단한 부분은 서로 연결되지 않으며, 돌연변이는 고려하지 않는다.) [3점] [180917]

―<보 기>-

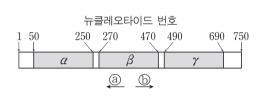
- ¬. X에서 A의 절단 위치는 ⓑ와 ⓒ이다.
- ㄴ. ②은 Ⅱ의 군체이다.
- 다. (라)의 앰피실린 첨가 배지에서 형성된 군체는 모두 y를 가진다.

과학탐구 영역

5. 그림은 유전자 재조합 기술을 이용하여 대장균 I 로부터 유전자 x의 단백질과 유전자 y의 단백질을 모두 생산하는 대장균 IV를 얻는 과정을, 표는 대장균 I ∼IV를 섞어 서로 다른 배지에서 배양한 결과를 나타낸 것이다. 젖당 분해 효소 유전자의 산물은 물질 Z를 분해하여 대장균 군체색을 흰색에서 푸른색으로 변화시킨다. 앰피실린과 카나마이신은 항생제이고, 유전자 $a \sim c$ 는 각각 앰피실린 저항성 유전자, 카나마이신 저항성 유전자, 젖당 분해 효소 유전자 중 하나이며, ○○○은 I ∼IV를 순서 없이 나타낸 것이다.

구분		1	<u>U</u>	Œ	2
Z와 앰피실린이	군체 형성 여부	형성함	71	형성함	형성 못함
첨가된 배지	군체색	푸른색	?	흰색	?
Z와 카나마이신이	군체 형성 여부	형성함	형성함	형성함	?
첨가된 배지	군체색	푸른색	흰색	흰색	?

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [210916]


---<보 기>

- ㄱ. ②는 '형성 못함'이다.
- 나. b는 카나마이신 저항성 유전자이다.

<u></u>	영역
	(n) 11 \
	<메 모>

CODE #0. Et Cetera

- 1. 다음은 DNA ①의 복제, 전사, 번역에 대한 실험이다.
 - 그림은 750개의 염기쌍으로 구성된 DNA ①을 나타낸 것이다. α, β, γ는 각각 단백질 암호화 부위, 프로모터가 포함된 부위, 복제 원점이 포함된 부위 중 하나이다. 표는 ①에서 돌연변이가 일어난 DNA ①~ □과 돌연변이 위치를 나타낸 것이다. ⑥~ □ 중 복제 원점에 돌연변이가 일어난 DNA는 복제되지 않으며, 프로모터에 돌연변이가 일어난 DNA는 전사되지 않는다.

DNA	돌연변이 위치
Ĺ.	141~150
(E)	241~250
2	301~310
(1)	501~510

[실험 과정 및 결과]

- (가) A가 담긴 시험관 I, B가 담긴 시험관 II, RNA로부터 번역을 가능하게 하는 용액이 담긴 시험관 III을 각각 5개씩 준비한다. A와 B는 각각 DNA 복제를 가능하게 하는 용액과 전사를 가능하게 하는 용액 중 하나이다.
- (나) □을 I과 Ⅱ에 각각 넣어 반응시킨 후 핵산의 생성 여부와, I과 Ⅱ의 생성물을 Ⅲ에 함께 넣어 반응시킨 후 단백질 생성 여부를 확인하였다. □~回도 □을 실험한 과정과 같은 방법으로 각각 실험하여 얻은 결과는 다음과 같다.

	7 🛮		DNA				
구분		\bigcirc		(L)	包		
I	핵산 생성 여부	+	+	+		+	
П	핵산 생성 여부	+	+	+	+	_	
Ш	단백질 생성 여부	+	+	_	_	+	
(+: 생성됨, -: 생성되지 않음)							

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (역배점 문항) [161118]

----<보 기>-

- ㄱ. 전사의 방향은 ⓑ이다.
- ㄴ. (가)의 I에는 RNA 중합 효소가 들어 있다.
- □을 (가)의 Ⅱ에 넣어 반응시켜 얻은 생성물을 (가)의Ⅲ에 넣어 반응시키면 단백질이 생성된다.

2. 다음은 대장균의 DNA 복제에 대한 실험이다.

[실험 과정]

- (가) DNA의 모든 염기가 ¹⁵N로 표지된 대장균을 ¹⁴N가 들어 있는 배지에 옮겨 배양한다.
- (나) 0분 시점에 대장균을 채취하여 추출한 DNA를 그림과 같이 일정한 길이로 절단한 후 원심 분리하고, ¹⁵N-¹⁵N 층과 ¹⁵N-¹⁴N 층에서 이중 가닥 DNA 조각 @~@와 @'~@'의 존재 여부를 조사한다. @'~@'은 각각 @~@가 복제된 DNA 조각이다.

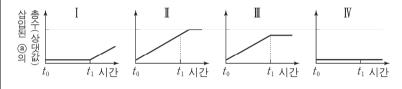
(다) 5분, 10분, 15분 각 시점에 대장균으로부터 DNA를 추출 하여 (나)를 반복한다.

[실험 결과]

배양 후 시점(분)	각 층에 존재하는 DNA 조각			
매양 후 시점(군)	¹⁵ N- ¹⁵ N 층	¹⁵ N- ¹⁴ N 층		
0	a, b, c, d, e	없음		
5	a, c, d, e	b ′		
10	(d), (e)	b ′		
15	(d), (e)	a', b', c'		

이 자료에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 복제 원점은 한 곳에만 존재한다.) (역배점 문항) [170616]

一<보 기>-


- ㄱ. ⓑ에 복제 원점이 있다.
- ㄴ. 복제는 🗅 방향으로만 일어났다.
- □. 배양 후 15분 시점의 ⓒ'은 배양 후 10분 시점이 지난 후에 합성이 완료되었다.

과학탐구 영역

3. 다음은 폴리펩타이드 합성에 대한 실험이다.

[실험 과정 및 결과]

- (가) mRNA와 개시 tRNA를 모두 제외하고, 그 밖의 번역에 필요한 모든 물질이 포함된 용액 X를 준비한다. 개시 tRNA는 개시 코돈에 결합하여 번역을 시작하게 한다.
- (나) 시험관 $I \sim V$ 에 각각 용액 X와 ⓐ <u>방사성 동위 원소로</u> 표지된 아미노산을 넣는다.
- (다) (나)의 각 시험관에 mRNA와 물질 ⑦~ⓒ을 표와 같이 시점 t₀과 t₁에서 첨가한 후 시간에 따라 생성된 폴리 펩타이드에 삽입된 ⓐ의 총수를 측정한다. ⑦~ⓒ은 각각 tRNA, 리보솜 A자리에 tRNA가 결합하는 것을 차단하는 물질, mRNA와 리보솜 소단위체의 결합을 차단하는 물질 중 하나이다.
- (라) 다음은 I~IV에서 얻은 결과이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, I~V에서 동일한 mRNA를 사용하였으며, 제시된 조건 이외의 다른 조건은 동일하다.) (역배점 문항) [170918]

----<보 기>---

- □. tRNA의 아미노산 결합 부위는 5' 말단에 존재한다.
- ㄴ. ⓒ은 mRNA와 리보솜 소단위체의 결합을 차단한다.
- 다. V에서 폴리펩타이드에 삽입된 @의 총수는 to 이후에 계속 증가한다.

4. 다음은 유전 암호를 알아내기 위한 실험의 일부이다.

〔실험 과정 및 결과〕

(가) RNA 합성에 사용되는 뉴클레오타이드 중 염기가 유라실(U)과 사이토신(C)인 뉴클레오타이드만을 시험관

시험관	구성비(U:C)
I	1:1
П	⊕:3
Ш	©:1

I ~Ⅲ에 표와 같은 구성비로 넣은 후 충분히 많은 양의 RNA를 인공적으로 합성한다. RNA가 합성될 때 U와 C는 무작위로 추가된다.

- (나) RNA로부터 번역을 가능하게 하는 용액을 I ~Ⅲ에 첨가 하여 충분한 시간 동안 폴리펩타이드를 합성시킨다.
- (다) (나)에서 생성된 폴리펩타이드를 구성하는 아미노산 수의 상대적인 비는 다음과 같다.

 아미노산 험관	류신	프롤린	페닐알라닌	세린
I	1	1	1	1
П	6	9	4	?
Ш	6	1	?	6

○ 표는 유전부호의 일부를 나타낸 것이다.

아미노산	류신	프롤린	페닐알라닌	세린	
코돈	CUU, CUC	CCU, CCC	UUU, UUC	UCU, UCC	

(가)에서 ① + ○의 값을 구하시오. (단, 개시 코돈과 종결 코돈은 고려하지 않는다.) [3점] [180915]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.