제 4 교시

2023핵년도 Central Dogma 모의평가 1회 문제지 과학탐구 영역

\bigcirc 자신이 선택한 과목의 문제지인지 확인하시오．
\bigcirc 매 선택과목마다 문제지 상단에 제〔1〕，〔2〕선택 과목 응시순서를 정확히 쓰시오．
\bigcirc 매 선택과목마다 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오．
\bigcirc 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오．

바람 속 내일의 숲을 궤뜱어본다

○ 답안지의 해당란에 성명과 수험 번호를 쓰고，또 수험 번호와 답을 정확히 표시하시오．
○ 선택한 과목 순서대로 문제를 풀고，답은 답안지의＇제1선택＇란부터 차례대로 표시하시오．

○ 문항에 따라 배점이 다릅니다．3점 문항에는 점수가 표시되어 있습니다． 점수 표시가 없는 문항은 모두 2점입니다．
물리학 I $1,2,31,32$ 쪽
화학 I $3,4,29,30$ 쪽
생명과학 I 5，6，27， 28 쪽
지구과학 I $7,8,25,26$ 쪽
물리학 II $9,10,23,24$ 쪽
화학 II $11,12,21,22$ 쪽
생명과학 II $13,14,19,20$ 쪽지구과학 II$15,16,17,18$ 쪽
※ 감독관의 안내가 있을 때까지 표지를 넘기지 마십시오．

제4고시 과학탐구 영역(생명과학 II)

성명

1. 표는 생명 과학자들의 주요 성과 (가)~(다)의 내용을 나타낸 것이다. $\mathrm{A} \sim \mathrm{C}$ 는 레이우엔훅, 로버트 훅, 파스퇴르를 순서 없이 나타낸 것이다.

구분	생명 과학자	내용
(가)	A	탄저병과 광견병 백신을 개발함
(나)	B	현미경을 통해 미생물을 관찰함
(다)	C	현미경을 통해 세포를 최초로 발견함

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

<보 기>

ㄱ. A는 실험을 통해 생물 속생설을 증명하였다.
ㄴ. B 는 레이우엔훅이고, C 는 로버트 훅이다.
ㄷ. (가)~(다)를 시대 순으로 배열하면 (다) \rightarrow (가) \rightarrow (나)이다.
(1) ᄀ
(2) ᄂ
(3) ᄃ
(4) ᄀ, ᄂ
(5) ᄀ, ᄂ, ᄃ
2. 다음은 3 역 6 계 분류 체계에 따른 4 개의 계에 속하는 생물 $\mathrm{A} \sim \mathrm{D}$ 에 대한 자료이다. $\mathrm{A} \sim \mathrm{D}$ 는 대장균, 메테인 생성균, 쇠뜨기, 플라나리아를 순서 없이 나타낸 것이다.
$\circ \mathrm{B}$ 와 C 는 모두 펩티도글리칸이 포함되지 않은 세포벽을 갖는다. - B 는 D 보다 A 와 유연관계가 가깝다.
$\circ \mathrm{C}$ 와 D 는 모두 원형 DNA 를 갖는다.
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

<보 기>

ㄱ. A 는 대장균이다
ㄴ. B 는 히스톤 단백질과 결합한 DNA 를 갖는다.
ㄷ. C 는 A 보다 D 와 유연관계가 가깝다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
3. 그림은 2 개의 염기로 이루어진 단일 가닥 RNA X를 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

<보 기>

ㄱ. X 에는 리보스가 있다.
ㄴ. (ㄱ)은 퓨린 계열에 속하는 염기이다.
ㄷ. (ㄴ)은 타이민(T)이다.
(1) ᄀ
(2) ᄂ
(3) ᄃ
(4) ᄀ, ᄂ
(5) ᄀ, ᄂ, ᄃ
4. 그림 (가)와 (나)는 동물과 식물의 구성 단계를 순서 없이 나타낸 것이다. $\mathrm{A} \sim \mathrm{D}$ 는 각각 기관, 기관계, 조직, 조직계 중 하나이고, (ㄱ)과 (ㄴ)은 갯지렁이와 석송을 순서 없이 나타낸 것이다.
(가)
 $\rightarrow \mathrm{A}$ \rightarrow B $\rightarrow C$ (7)
(나)
나) 세포 $\rightarrow \mathrm{A}$ $\rightarrow \mathrm{C}$ D \triangle (ㄴ)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

<보 기>

ㄱ. B 는 조직계이다.
ㄴ. (가)에서 꽃은 A 의 예이다.
ㄷ. (ㄴ)은 체절을 갖는다.
(1) ᄀ
(2) ᄂ
(3) ᄃ
(4) ᄀ, ᄃ
(5) ᄂ, ᄃ
5. 원시 세포의 기원으로 추정되는 마이크로스피어와 리포솜에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

<보 기>

ㄱ. 마이크로스피어와 리포솜은 모두 폭스가 최초로 합성하였다.
ㄴ. 리포솜의 막에는 인이 포함된 물질이 있다.
ㄷ. 마이크로스피어는 액상의 막을 갖는다.
(1) ᄂ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
6. 그림은 세포 호흡과 발효에서 피루브산이 물질 $\mathrm{A} \sim \mathrm{C}$ 로 전환되는 과정 I \sim IIㄹㄹㄹ, 표는 $\mathrm{I} \sim \mathrm{II}$ 에서 물질 (ㄱ) $\sim(5)$ 의 생성 여부와 사용 여부를 나타낸 것이다. $\mathrm{A} \sim \mathrm{C}$ 는 각각 아세트알데하이드 아세틸 CoA , 젖산 중 하나이고, (ㄱ)~()은 $\mathrm{NAD}^{+}, \mathrm{NADH}, \mathrm{CO}_{2}$ 를 순서 없이 나타낸 것이다. (a)와 (b)는 각각 '생성됨'과 '사용됨' 중 하나이다.

과정 물질	(ㄱ)	(ㄴ)	(ㄷ)
I	(a)	$?$	$?$
II	(a)	(a)	(b)
III	$?$	(b)	(a)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]
<보 기>
ㄱ. (a)는 '생성됨'이다.
ㄴ. 1 분자당 $\frac{\text { 탄소 수 }}{\text { 수소 수 } \mathrm{L}} \mathrm{A}$ 와 C 가 같다.
ㄷ. 피에서 피루브산의 산화가 일어난다.
(1) 7
(2) ᄂ
(3) ᄃ
(4) ᄀ, ᄂ
(5) ᄀ, ᄂ, ᄃ
7. 유전자풀의 변화 요인에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

<보 기>

ㄱ. 병목 효과는 유전적 부동의 한 현상이다.
ㄴ. 자연 선택은 유전자풀에 새로운 대립유전자를 제공한다.
ㄷ. 창시자 효과는 두 집단 사이의 유전자 흐름에 의해 일어난다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
8. 그림은 고장액에 있던 어떤 식물 세포를 저장액에 넣었을 때 세포 부피에 따른 팽압과 삼투압을, 표는 $V_{1} \sim V_{3}$ 에서의 (가)와 (나)를 나타낸 것이다. (가)와 (나)는 각각 A 와 B 중 하나이고, A 와 B 는 각각 삼투압과 팽압 중 하나이다. (ㄴ)은 (ㄷ)보다 작다.

압력 부피	V_{1}	V_{2}	V_{3}
(가)	$?$	(ㄱ)	(ㄴ)
(나)	(ㄷ)	7	(ㄹ)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

$$
-<\text { 보 기>- }
$$

ㄱ. (가)는 B 이다.
ㄴ. V_{1} 일 때 이 세포는 원형질 분리가 일어난 상태이다.
ㄷ. (ㄴ) + (ㄷ) $>$ (ㄱ) + (ㄹ)이다.
(1) ᄀ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
9. 그림 (가)는 시금치에서 엽록소 a 와 엽록소 b 의 흡수 스펙트럼을, (나)는 이 식물의 명반응에서 전자가 이동하는 경로를 나타낸 것이다. X 와 Y 는 각각 엽록소 a 와 엽록소 b 중 하나이고, 물질 (가)는 (a)에서 전자 전달을 차단하여 광합성을 저해한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-<보 기>

ㄱ. 광계 I 의 반응 중심 색소는 Y 이다.
ㄴ. 빛을 가장 잘 흡수하는 파장은 광계 Π 의 반응 중심 색소가 광계 I 의 반응 중심 색소보다 짧다.
ㄷ. 스트로마에서 (ㄱ)의 농도는 (가)를 처리한 후가 처리하기 전 보다 낮다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
10. 그림은 효소 E 에 대한 반응에서 조건 $\mathrm{I} \sim \mathrm{IV}$ 일 때 시간에 따른 (a)의 농도를 나타낸 것이다. $\Pi \sim \mathrm{IV}$ 은 각각 t_{1} 시점일 때 I 에 (b), E , 물질 X 중 하나를 첨가한 것이다. (a)와 (b)는 각각 기질과 생성물 중 하나이고, X 는 E 의 활성 부위가 아닌 다른 부위에 결합하여 E 의 작용을 저해한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]
<보 기>
ㄱ. (a)는 생성물이다.
ㄴ. Π 는 I 에 기질을 첨가한 것이다.
ㄷ. t_{3} 에서 E 에 의한 반응 속도는 IV 가 I 보다 빠르다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
11. 다음은 어떤 세포에서 복제 중인 이중 가닥 DNA 의 일부에 대한 자료이다.

○ (가)와 (나)는 복제 주형 가닥이고, 서로 상보적이며, (ㄱ), (ㄴ), (ㄷ)은 새로 합성된 가닥이다.
○ (가), (나), 다은 각각 46 개의 염기로 구성되고, (ㄱ)은 18 개의 염기로 구성되며, (ㄴ)은 22 개의 염기로 구성된다.
○ 프라이머 $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 는 각각 6 개의 염기로 구성된다. Z 는 피리미딘 계열에 속하는 2 종류의 염기로 구성되고, X와 Y 중 하나는 Z 와 상보적이며, 나머지 하나는 퓨린 계열에 속하는 1 종류의 염기로 구성된다.

- I, I, (a)에서 $\frac{\mathrm{G}+\mathrm{C}}{\mathrm{A}+\mathrm{T}}$ 는 각각 (가), (나, (따이고, (ㄷ)에서 $\frac{\mathrm{G}+\mathrm{C}}{\mathrm{A}+\mathrm{T}}<1$ 이다. (가), (ㄴ), (다는 $3,1, \frac{1}{3}$ 을 순서 없이 나타낸 것이다.
- (ㄱ)과 (가) 사이의 염기 간 수소 결합의 총개수는 (ㄴ)과 (가) 사이의 염기 간 수소 결합의 총개수보다 1 개 많다.

(나)
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]
<보 기>
ㄱ. $\frac{\mathrm{G}+\mathrm{C}}{\mathrm{A}+\mathrm{T}}$ 는 I 에서가 (a)에서보다 크다.
ㄴ. Y 와 Z 는 서로 상보적이다.
ㄷ. II과 (나) 사이의 염기 간 수소 결합의 총개수는 96 개이다.
(1) ᄀ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄀ, ᄃ
(5) ᄂ, ᄃ

12. 표는 7 종의 동물 $\mathrm{A} \sim \mathrm{G}$ 의 학명과 분류 단계를, 그림은 $\mathrm{A} \sim \mathrm{G}$ 중 5 종을 포함한 동물 6 종의 유연관계를 계통수로 나타낸 것이다. $\mathrm{A} \sim \mathrm{G}$ 와 계통수의 6 종은 각각 2 개 목, 3 개 과로 분류된다.

종	학명	목명	과명
A	Crocidura lasiura	$?$	땃쥐과
B	Castor fiber	쥐목	$?$
C	Scutisorex thori	$?$	$?$
D	Talpa caeca	$?$	두더지과
E	Mogera robusta	진무맹장목	$?$
F	Crocidura sapaensis	$?$	$?$
G	Castor canadensis	$?$	비버과

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]
<보 기>
ㄱ. A 는 쥐목에 속한다.
ㄴ. E 와 F 는 같은 과에 속한다.
ㄷ. (가)의 학명에서 속명은 'Crocidura'이다.
(1) ᄀ
(2) ᄂ
(3) ᄃ
(4) ᄀ, ᄂ
(5) ᄀ, ᄃ
13. 다음은 붉은빵곰팡이의 유전자 발현에 대한 자료이다.

○ 야생형에서 아르지닌이 합성되는 과정은 그림과 같다.

- 돌연변이주 I과 П는 각각 유전자 $a \sim c$ 중 하나에만 돌연 변이가 일어난 것이고, 피은 (ㄱ) I 과 피 중 하나에서 추가로 (ㄴ) 하나의 유전자에 돌연변이가 일어난 것이다.
○ 야생형, I, П, II을 각각 최소 배지에 물질 (a)가 첨가된 배지, 최소 배지에 물질 (b)가 첨가된 배지, 최소 배지에 물질 (c)가 첨가된 배지에서 배양하였을 때, 생장 여부와 (c)의 합성 여부는 표와 같다. (a)~(c)는 오르니틴, 시트룰린, 아르지닌을 순서 없이 나타낸 것이다.

| 구분 | 최소 배지, (a) | | 최소 배지, (b) | | 최소 배지, (C) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 생장 | (c) 합성 | 생장 | (c) 합성 | 생장 | (c) 합성 |
| 야생형 | + | \bigcirc | + | \bigcirc | + | \bigcirc |
| I | + | \times | - | \times | + | \times |
| \square | + | \times | + | \bigcirc | + | \times |
| III | + | \times | - | \times | - | \times |
| $(+:$ 생장함, $-:$ 생장 못함, \bigcirc : 합성됨, $\times:$ 합성 안 됨) | | | | | | |

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.)

<보 기>

ㄱ. (a)는 아르지닌이다.
ㄴ. (ㄱ)은 최소 배지에 (b)가 첨가된 배지에서 생장한다.
ㄷ. (ㄴ)으로부터 합성된 효소의 기질은 (a)이다.
(1) ᄀ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄀ, ᄃ
(5) ᄂ, ᄃ
14. 고사리, 소나무, 우산이끼, 장미에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

<보 기>

ㄱ. 고사리는 줄기를 가지고 있다.
ㄴ. 소나무와 장미는 모두 큐티클층을 가지고 있다.
ㄷ. 고사리와 우산이끼는 모두 비관다발 식물에 속한다.
(1) ᄀ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
15. 다음은 이중 가닥 $\mathrm{DNA} x$ 를 이용한 실험이다.

- x 는 35 개의 염기쌍으로 이루어져있고 x 중 한 가닥의 염기 서열은 다음과 같다. (ㄱ)~ (ㄹ)은 A, C, G, T를 순서 없이 나타낸 것이다.

- 그림은 제한 효소 BamH I, BsrG I, Kpn I, Sma I 이 인식 하는 염기 서열과 절단 위치를 나타낸 것이다.
5^{\prime}-GGATCC- $3^{\prime} \quad 5^{\prime}$-TGTACA- $3^{\prime} \quad 5^{\prime}$-GGTACC- $3^{\prime} \quad 5^{\prime}$-CCC:GGG- 3^{\prime} 3^{\prime}-CCTAGG-5' $\quad 3^{\prime}$-ACATGT-5' $\quad 3^{\prime}$-CCATGG- $5^{\prime} \quad 3^{\prime}$-GGGCCC-5' BamHI BsrGI KpnI SmaI
- 제한 효소에 의해 형성된 DNA 조각의 말단의 단일 가닥이 서로 상보적이면, DNA 조각은 연결 효소에 의해 연결된다.

〔실험 과정 및 결과〕

(가) 제한 효소 반응에 필요한 물질과 x 가 들어 있는 시험관 $\mathrm{I} \sim \mathrm{V}$ 를 준비한다.
(나) (가)의 $\mathrm{I} \sim \mathrm{V}$ 에 표와 같이 제한 효소를 첨가하여 반응시킨다. (다) (나)의 결과 생성된 DNA 조각 수와 각 DNA 조각의 염기 수를 확인한 결과는 표와 같다. $\mathrm{W} \sim \mathrm{Z}$ 는 $\mathrm{BamH} \mathrm{I}, \mathrm{BsrGI}$, Kpn I, Sma I 을 순서 없이 나타낸 것이다.

시험관	I	II	III	IV	V
첨가한 제한 효소	W	X	Y	Z	Y, Z
생성된 DNA 조각 수	2	3	2	2	3
생성된 각 DNA 조각의 염기 수	(a) 18, 52	6, 26, 38	?	18, 52	$\begin{gathered} 16, \text { (b) } 18, \\ 36 \end{gathered}$

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

<보 기>

ㄱ. (ㄱ)은 타이민(T)이다.
ㄴ. (a)와 (b)에 연결 효소를 처리하면 DNA 조각은 연결된다.
ㄷ. II에서 염기 수가 36 개인 DNA 조각이 생성된다.
(1) ᄀ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄃ
16. 표는 6 분자의 CO_{2} 가 고정될 때의 캘빈 회로에서 (가)~(라)의 (ㄱ)~(ㄷ)을 나타낸 것이다. (가) \sim (라)는 각각 $3 \mathrm{PG}, \mathrm{PGAL}$, 포도당, RuBP 중 하나이고, (ㄱ) ~ (ㄷ)은

구분	(ㄱ)	(ㄴ)	(ㄷ)
(가)	0	$?$	$?$
(나)	$?$	3	(a)
(다)	(b)	$?$	2
(라)	$?$	c	$?$

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

<보 기>

ㄱ. (ㄷ)은 '분자 수’이다.
ㄴ. (다)는 PGAL이다.
ㄷ. (a) + (b) + (c) $=18$ 이다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
17. 그림은 세포 호흡이 일어나고 있는 어떤 미토콘드리아의 TCA 회로 일부를, 표는 과정 $\mathrm{I} \sim$ II에서 NADH, ATP, $\mathrm{CO}_{2}, \mathrm{FADH}_{2}$ 의 생성 여부를 나타낸 것이다. (ㄱ)~ (ㄹ)은 각각 시트르산, 5 탄소 화합물, 4 탄소 화합물, 옥살아세트산 중 하나이다.

(가)

굴질	I	I	III
NADH	$?$	$?$	$?$
CO_{2}	$?$	0	$?$
FADH_{2}	\bigcirc	\times	$?$
ATP	\bigcirc	$?$	$?$
$\mathrm{O}:$ 생성됨, $\times:$ 생성 안 됨)			

(나)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

<보 기>

ㄱ. 회로 반응의 방향은 (b)이다.
ㄴ. (ㄴ)과 (ㄹ)의 탄소 수 합은 (ㄱ)과 (ㄷ)의 탄소 수 합보다 크다. ㄷ. Iㅣ에서 NADH 가 생성된다.
(1) ᄀ
(2) ᄂ
(3) ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
18. 다음은 동물 종 P 의 두 집단 I 과 Π 에 대한 자료이다.

- I 과 П는 모두 하디•바인베르크 평형이 유지되는 집단이다.

○ 유전 형질 (ㄱ)은 상염색체에 있는 대립유전자 A와 A*에 의해 결정되며, A 와 A^{*} 사이의 우열관계는 분명하다.

- I 에서 $\frac{\text { 대립유전자 } \mathrm{A} \text { 의 수 }}{\text { (ㄱ)을 나타내는 개체 수 }}=\frac{24}{7}$ 이다.
$\circ \Pi$ 에서 (ㄱ)을 갖는 개체가 (ㄱ)을 갖지 않는 개체와 교배하여 자손 $\left(\mathrm{F}_{1}\right)$ 을 낳을 때, 이 F_{1} 이 (ㄱ)을 갖지 않을 확률은 $\frac{3}{8}$ 이다.
- I 과 П의 개체들을 모두 합쳐서 A^{*} 의 빈도를 구하면 $\frac{4}{13}$ 이다.
- I 과 Π 에서 유전자형이 AA^{*} 인 개체 수 차는 600 이다.

I 과 Π 의 개체 수 차는? [3점]
(1) 1800
(2) 2400
(3) 3000
(4) 3600
(5) 4200
19. 유도 만능 줄기세포(역분화 줄기세포)와 성체 줄기세포에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

<보 기>

ㄱ. 성체 줄기세포를 얻을 때 핵치환 기술이 사용된다.
ㄴ. 유도 만능 줄기세포는 성체 줄기세포보다 분화 능력이 뛰어나다.
ㄷ. 유도 만능 줄기세포와 성체 줄기세포는 모두 체세포로부터 얻는다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
20. 다음은 어떤 진핵생물의 유전자 x 와 돌연변이 유전자 y, z 에 대한 자료이다.
$\circ x, y, z$ 로부터 각각 폴리펩타이드 $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 가 합성된다.

- (ㄱ) x 의 DNA 이중 가닥 중 전사 주형 가닥으로부터 합성된 X 를 구성하는 아미노산과 각 아미노산의 개수는 표와 같다. X 의 두 번째 아미노산은 글리신이고, 일곱 번째 아미노산은 아르지닌이다.

아미노산	개수	아미노산	개수	아미노산	개수
메싸이오닌	1	아르지닌	2	류신	1
알라닌	1	글리신	1	세린	1

- y 는 (ㄱ)을 구성하는 모든 구아닌(G)이 염기 (a)로 치환된 것 이다. (a)는 아데닌(A), 타이민(T), 사이토신(C) 중 하나이다. - Y는 4 개의 아미노산으로 구성되고 3 개의 글리신을 가진다. ○ z 는 y 의 전사 주형 가닥에서 연속된 2 개의 염기 (b)가 결실 되고, 5^{\prime} - (c)(a) -3^{\prime} 가 5^{\prime} - (a)(c) -3^{\prime} 로 치환된 것이다.
$\circ \mathrm{Z}$ 는 5 개의 아미노산으로 구성되고, 3 개의 메싸이오닌, 2 개의 트립토판을 가진다.
$\circ \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 의 합성은 개시 코돈 AUG 에서 시작하여 종결 코돈 에서 끝나며, 표는 유전부호를 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 핵산 염기 서열 변화는 고려 하지 않는다.) [3점]

<보 기>

ㄱ. (ㄱ)에서 세린을 암호화하는 부위에는 (b)와 (C)가 총 1 개 있다.
ㄴ. X의 류신을 운반하는 tRNA의 안티코돈에서 3^{\prime} 말단 염기는 아데닌(A)이다.
ㄷ. Y 와 Z 의 합성에 사용된 종결 코돈의 염기 서열은 같다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ

[^0]
[^0]: * 확인 사항
 - 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.

