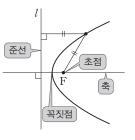
포물선

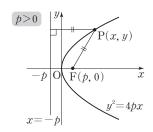
1. 포물선의 뜻

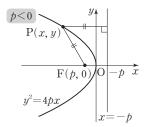
- (1) 평면 위에 한 점 F와 점 F를 지나지 않는 한 직선 I이 있을 때, 점 F에 이르는 거리 와 직선 l에 이르는 거리가 같은 점들의 집합을 포물선이라 한다.
- (2) 점 F를 포물선의 초점, 직선 l을 포물선의 준선이라 한다. 또 포물선의 초점을 지나 고 준선에 수직인 직선을 포물선의 축, 포물선과 축이 만나는 점을 포물선의 꼭짓점 이라 하다.



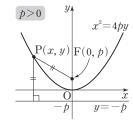
2. 포물선의 방정식

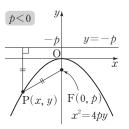
(1) 초점이 x축 위에 있는 포물선의 방정식 초점이 F(p, 0), 준선이 x=-p인 포물선의 방정식은 $y^2=4px$ (단, $p\neq 0$)





(2) 초점이 y축 위에 있는 포물선의 방정식 초점이 F(0, p), 준선이 y=-p인 포물선의 방정식은 $x^2=4py$ (단, $p\neq 0$)





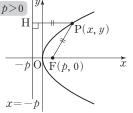
(설명) 0이 아닌 실수 p에 대하여 점 F(p, 0)을 초점으로 하고 직선 x = -p를 준선으로 하는 포물선의 방정식을 구해 보자. 그림과 같이 포물선 위의 점 P(x, y)에서 준선에 내린 수선의 발을 H라 하면 점 H의 b>0좌표는 (-p, y)이다.

포물선의 정의에 의하여
$$\overline{\mathrm{PF}} = \overline{\mathrm{PH}}$$
이므로

$$\sqrt{(x-p)^2+y^2} = |x+p|$$

이고, 이 식의 양변을 제곱하여 정리하면

$$y^2 = 4px$$

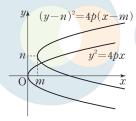


01 포물선

3. 포물선의 평행이동

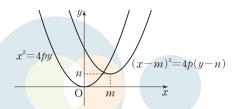
- (1) 포물선 $y^2 = 4px$ 를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 포물선의 방정식은 $(y-n)^2 = 4p(x-m)$
 - 이다. 이때 두 포물선 $y^2 = 4px$, $(y-n)^2 = 4p(x-m)$ 의 초점, 준선, 꼭짓점은 다음과 같다.

방	정식	$y^2 = 4px$	$(y-n)^2 = 4p$	o(x-m)
Ž	스점	(p, 0)	(p+m,	(n)
<i>2</i> ਦ	는선	x = -p	x = -p	+m
<u>ম</u>	짓점	(0, 0)	(m, n	ı)



- (2) 포물선 $x^2 = 4py$ 를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 포물선의 방정식은 $(x-m)^2 = 4p(y-n)$
 - 이다. 이때 두 포물선 $x^2 = 4by$. $(x-m)^2 = 4b(y-n)$ 의 초점, 준선, 꼭짓점은 다음과 같다.

초점 $(0,p)$ $(m,p+n)$ 준선 $y=-p$	방정식	$x^2 = 4py$	$(x-m)^2 = 4p(y-n)$
준선 $y=-p$ $y=-p+n$	초점	(0, p)	(m, p+n)
	준선	y=-p	y = -p + n
꼭짓점 $(0,0)$ (m,n)	꼭짓점	(0, 0)	(m, n)

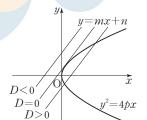


4. 포물선과 직선의 위치 관계

포물선과 직선의 방정식을 각각 $y^2 = 4px$, y = mx + n $(m \neq 0)$ 이라 할 때, y = mx + n을 $y^2 = 4px$ 에 대입하여 정리하면

$$m^2x^2+2(mn-2p)x+n^2=0 \qquad \cdots \quad \bigcirc$$

포물선 $y^2 = 4px$ 와 직선 y = mx + n의 교점의 개<mark>수는 x에</mark> 대한 이차방정식 \bigcirc 의 서 로 다른 실근의 개수와 같으므로 방정식 ①의 판별식을 D라 하면 포물선과 직선의 위 치 관계는 다음과 같다.



- (1) $D>0 \iff$ 서로 다른 두 점에서 만난다.
- (2) $D=0 \iff$ 한 점에서 만난다. (접한다.)
- (3) $D < 0 \iff$ 만나지 않는다.

01 포물선

5. 포물선의 접선

(1) 기울기가 주어진 포물선의 접선의 방정식

포물선 $y^2=4px$ 에 접하고 기울기가 m인 직선의 방정식은 $y=mx+\frac{p}{q_0}$ (단, $m\neq 0$)

설명 포물선 $y^2 = 4px$ 에 접하고 기울기가 m인 직선의 방정식을 구해 보자.

포물선 $y^2=4px$ 에 접하고 기울기가 $m(m\neq 0)$ 인 직선의 방정식을 y=mx+n이라 하고, 이를 포물선의 방정식 $y^2 = 4px$ 에 대입하여 얻은 x에 대한 이차방정식

$$m^2x^2+2(mn-2p)x+n^2=0$$

의 판별식을 D라 하면

$$\frac{D}{4} = (mn - 2p)^2 - m^2n^2 = 4p(p - mn) = 0$$

이다. 이때 $p \neq 0$ 이므로 p-mn=0, 즉 $n=\frac{p}{m}$

따라서 구하는 접선의 방정식은 $y=mx+\frac{p}{m}$ 이다.

(2) 포물선 위의 점에서의 접선의 방정식

포물선 $y^2=4px$ 위의 점 (x_1, y_1) 에서의 접선의 방정식은 $y_1y=2p(x+x_1)$

설명 포물선 $y^2 = 4px$ 위의 점 $P(x_1, y_1)$ 에서의 접선의 방정식을 구해 보자.

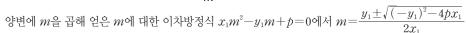
 $x_1 \neq 0$ 일 때 접선의 기울기를 $m(m \neq 0)$ 이라 하면 직선의 방정식은

$$y-y_1=m(x-x_1)$$

또 포물선 $y^2 = 4px$ 에 접하고 기울기가 m인 직<mark>선의 </mark>방정식은

$$y = mx + \frac{p}{m}$$

 \bigcirc 과 \bigcirc 은 같은 직선이므로 $-mx_1+y_1=\frac{p}{m}$

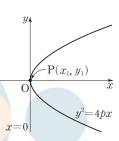


이때
$$y_1^2 = 4px_1$$
, 즉 $x_1 = \frac{y_1^2}{4p}$ 이므로 $m = \frac{y_1}{2x_1} = \frac{2p}{y_1} (y_1 \neq 0)$

이것을 \bigcirc 에 대입하면 $y=\frac{2p}{y_1}x-\frac{2p}{y_1}x_1+y_1$ 이고, $y_1^2=4px_1$ 이므로 정리하면

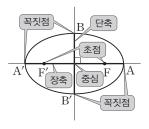
$$y_1y = 2b(x+x_1)$$

 $x_1 = 0$ 일 때 $y_1 = 0$ 이므로 이 식에 대입하면 접선<mark>의 방</mark>정식은 x = 0이고, 그림과 같이 포물선 $y^2=4px$ 위의 점 (0,0)에서의 접선이 $y^{\frac{1}{2}}(x=0)$ 이므로 $x_1=0$ 일 때에도 이 식은 성립한다.



1. 타원의 뜻

- (1) 평면 위의 서로 다른 두 점 F. F'으로부터의 거리의 합이 일정한 점들의 집합을 타원이라 한다.
- (2) 두 점 F, F'을 타원의 초점이라 한다. 두 초점을 잇는 직선이 타원과 만나는 점을 각각 A. A'이라 하고. 선분 FF'의 수직이등분선이 타원과 만나는 점을 각각 B. B'이라 할 때, 네 점 A, A', B, B'을 타원의 꼭짓점이라 하고, 선분 AA'을 타 원의 장축, 선분 BB'을 타원의 단축이라 하며, 장축과 단축이 만나는 점을 타원 의 중심이라 한다



2. 타원의 방정식

(1) 두 초점 F(c, 0), F'(-c, 0)으로부터의 거리의 합이 2a(a>c>0)인 타원의 밧젓식으

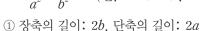
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (단, $b^2 = a^2 - c^2$, $b > 0$)

② 초점의 좌표:
$$F(\sqrt{a^2-b^2}, 0), F'(-\sqrt{a^2-b^2}, 0)$$

③ 꼭짓점의 좌표:
$$(a, 0), (-a, 0), (0, b), (0, -b)$$

(2) 두 초점 F(0, c), F'(0, -c)로부터의 거리의 합이 2b (b>c>0)인 타원의 방정식은

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (단, $a^2 = b^2 - c^2$, $a > 0$)



② 초점의 좌표:
$$F(0, \sqrt{b^2-a^2})$$
, $F'(0, -\sqrt{b^2-a^2})$

③ 꼭짓점의 좌표:
$$(a, 0), (-a, 0), (0, b), (0, -b)$$

(설명) 두 초점 F(c, 0), F'(-c, 0)으로부터의 거리의 합이 2a(a>c>0)인 타워의 방정식을 구해 보자.

타원 위의 임의의 점을 P(x, y)라 하면

$$\overline{PF} = \sqrt{(x-c)^2 + y^2}, \ \overline{PF'} = \sqrt{(x+c)^2 + y^2}$$

이고. $\overline{PF} + \overline{PF'} = 2a$ 이므로

$$\sqrt{(x-c)^2 + y^2} + \sqrt{(x+c)^2 + y^2} = 2a$$

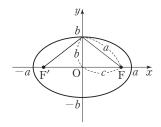
$$\sqrt{(x-c)^2 + y^2} = 2a - \sqrt{(x+c)^2 + y^2}$$

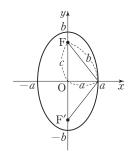
양변을 제곱하여 정리하면 $cx+a^2=a\sqrt{(x+c)^2+y^2}$

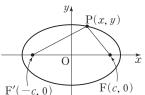
다시 양변을 제곱하여 정리하면
$$(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$$

$$a>c>$$
0이므로 $a^2-c^2=b^2$ 이라 하면 $b^2x^2+a^2y^2=a^2b^2$

이 식의 양변을
$$a^2b^2$$
으로 나누면 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$







02 타원

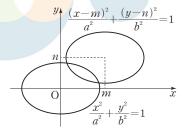
3. 타원의 평행이동

타원 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)을 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 타원의 방정식은

$$\frac{(x-m)^2}{a^2} + \frac{(y-n)^2}{b^2} = 1$$

이다. 이때 두 타원 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $\frac{(x-m)^2}{a^2} + \frac{(y-n)^2}{b^2} = 1$ 의 초점, 꼭짓점, 중심의 <mark>좌표는</mark> 다음과 같다.

방정식	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{(x-m)^2}{a^2} + \frac{(y-n)^2}{b^2} = 1$		
초점	$(\sqrt{a^2-b^2}, 0), (-\sqrt{a^2-b^2}, 0)$	$(\sqrt{a^2-b^2}+m, n), (-\sqrt{a^2-b^2}+m, n)$		
꼭짓점	(a, 0), (-a, 0), (0, b), (0, -b)	(a+m, n), (-a+m, n), (m, b+n), (m, -b+n)		
중심	(0, 0)	(m, n)		



(1) 타원 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (b>a>0)을 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 타원

 $\frac{(x-m)^2}{a^2} + \frac{(y-n)^2}{b^2} = 1$ 의 초점, 꼭짓점, 중심의 좌표도 평행이동을 이용하여 구할 수 있다.

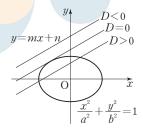
(2) 타원을 평행이동하여도 그 모양과 크기는 변하지 않으므로 장축의 길이, 단축의 길이는 변하지 않는다. 즉, 타원 $\frac{(x-m)^2}{a^2} + \frac{(y-n)^2}{b^2} = 1$ (a>b>0)의 장축의 길이는 2a, 단축의 길이는 2b이고, 타원 $\frac{(x-m)^2}{a^2} + \frac{(y-n)^2}{b^2} = 1$ (b>a>0)의 장축<mark>의 길</mark>이는 2b, 단축의 길이는 2a이다.

4. 타원과 직선의 위치 관계

타원과 직선의 방정식을 각각 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, y = mx + n이라 할 때, y = mx + n을 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 에 대입하여 정리 하면

$$(a^2m^2+b^2)x^2+2a^2mnx+a^2(n^2-b^2)=0$$

타원 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 과 직선 y = mx + n의 교점의 개<mark>수는 x에</mark> 대한 이차방정식 \bigcirc 의 서로 다른 실근의 개수와 같으므로 방정식 \bigcirc 의 판별식을 D라 하면 타원과 직선의 위치 관 계는 다음과 같다.



- (1) D>0 ⇔ 서로 다른 두 점에서 만난다.
- (2) D=0 ⇔ 한 점에서 만난다. (접한다.)
- (3) *D*<0 ⇔ 만나지 않는다.

02 타워

5. 타원의 접선

(1) 기울기가 주어진 타원의 접선의 방정식

타원 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 에 접하고 기울기가 m인 직선의 방정식은 $y = mx \pm \sqrt{a^2m^2 + b^2}$

구하는 접선의 방정식을 y=mx+n이라 하고, <mark>타원의</mark> 방정식 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 에 대입하<mark>여 정리</mark>하면

$$(a^2m^2+b^2)x^2+2a^2mnx+a^2(n^2-b^2)=0$$

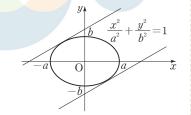
x에 대한 이차방정식 \bigcirc 의 판별식을 D라 하면

$$D = 4a^2b^2(a^2m^2 + b^2 - n^2) = 0$$

이다. 이때 $a \neq 0$, $b \neq 0$ 이므로

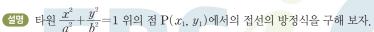
 $a^2m^2+b^2-n^2=0$, $= n^2=a^2m^2+b^2$

따라서 구하는 접선의 방정식은 $y = mx + \sqrt{a^2m^2 + b^2}$



(2) 타원 위의 점에서의 접선의 방정식

타원 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 위의 점 (x_1, y_1) 에서의 접선의 방정<mark>식은 $\frac{x_1x}{a^2} + \frac{y_1y}{b^2} = 1$ </mark>



 $y_1 \neq 0$ 일 때 접선의 기울기를 m이라 하면 직선의 방정식은

$$y-y_1=m(x-x_1)$$

또 기울기가 m인 타원 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 의 접선의 방정식은

$$y = mx \pm \sqrt{a^2m^2 + b^2}$$

①의 2개의 직선 중 하나가 \bigcirc 과 같은 직선이므로 y절편의 제곱이 같다.

$$\exists (-mx_1+y_1)^2=a^2m^2+b^2$$

$$(a^2-x_1^2)m^2+2x_1y_1m+b^2-y_1^2=0$$
 ©

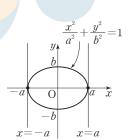
$$\frac{{\left| {x_1^2} \right|}^2}{{{a^2}}} + \frac{{{y_1}^2}}{{{b^2}}} = 1$$
에서 ${a^2} - {x_1^2} = \frac{{{a^2}{y_1^2}}}{{{b^2}}}$, ${b^2} - {y_1^2} = \frac{{{b^2}{x_1^2}}}{{{a^2}}}$ 이므로 이를 ©에 대입하여 정리하면

$$\left(\frac{a}{b}y_1m + \frac{b}{a}x_1\right)^2 = 0, \stackrel{\geq}{=} m = -\frac{b^2x_1}{a^2y_1}$$

이를 \bigcirc 에 대입하여 정리하면 $y=-\frac{b^2x_1}{a^2y_1}x+\frac{b^2x_1^2}{a^2y_1}+y_1$ 이고, $\frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}=1$ 이므로

$$\frac{x_1x}{a^2} + \frac{y_1y}{b^2} = 1$$

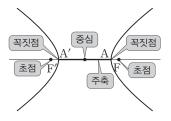
한편, $y_1=0$ 일 때 $x_1=a$, $x_1=-a$ 이므로 이 식에 대입하면 접선의 방정식은 각각 x=a, x=-a이고, 그림과 같이 타원 위의 두 점 (a, 0), (-a, 0)에서의 접선이 각각 직선 x=a, x=-a이므로 $y_1=0$ 일 때에도 이 식은 성립한다.



쌍곡선

1. 쌍곡선의 뜻

- (1) 평면 위의 서로 다른 두 점 F. F'으로부터의 거리의 차가 일정한 점들의 집합 을 쌍곡선이라 한다.
- (2) 두 점 F. F'을 쌍곡선의 초점이라 한다. 두 초점을 잇는 직선이 쌍곡선과 만나 는 점을 각각 A. A'이라 할 때, 두 점 A. A'을 쌍곡선의 꼭짓점, 선분 AA'을 쌍곡선의 주축이라 하고. 주축의 중점을 쌍곡선의 중심이라 한다.



2. 쌍곡선의 방정식

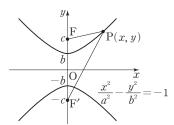
(1) 두 초점 F(c, 0), F'(-c, 0)으로부터의 거리의 차가 2a인 쌍곡선의 방정식은

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 (단, $c > a > 0$, $b^2 = c^2 - a^2$)

- ① 초점의 좌표: $F(\sqrt{a^2+b^2}, 0), F'(-\sqrt{a^2+b^2}, 0)$
- ② 꼭짓점의 좌표: (a, 0), (-a, 0)
- ③ 주축의 길이: 2a
- ④ 중심의 좌표: (0,0)
- (2) 두 초점 F(0, c), F'(0, -c)로부터의 거리의 차가 2b인 쌍곡선의 방정식은

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
 (단, $c > b > 0$, $a^2 = c^2 - b^2$)

- ① 초점의 좌표: $F(0, \sqrt{a^2+b^2})$, $F'(0, -\sqrt{a^2+b^2})$
- ② 꼭짓점의 좌표: (0, b), (0, -b)
- ③ 주축의 길이: 2b
- ④ 중심의 좌표: (0.0)



설명 두 점 F(c, 0), F'(-c, 0)으로부터의 거리의 차가 2a(c>a>0)인 쌍곡선의 방정식을 구해 보자.

쌍곡선 위의 임의의 점을 P(x, y)라 하면

$$\overline{PF} = \sqrt{(x-c)^2 + y^2}, \ \overline{PF'} = \sqrt{(x+c)^2 + y^2}$$

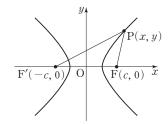
쌍곡선의 정의에 의하여 $|\overline{\mathrm{PF'}} - \overline{\mathrm{PF}}| = 2a$ 이므로

$$|\sqrt{(x+c)^2+y^2} - \sqrt{(x-c)^2+y^2}| = 2a$$

$$\sqrt{(x+c)^2+y^2} - \sqrt{(x-c)^2+y^2} = \pm 2a$$

$$\sqrt{(x+c)^2+y^2} = \sqrt{(x-c)^2+y^2} \pm 2a$$

- 이 식의 양변을 제곱하여 정리하면 $cx-a^2=\pm a\sqrt{(x-c)^2+y^2}$
- 다시 양변을 제곱하여 정리하면 $(c^2-a^2)x^2-a^2y^2=a^2(c^2-a^2)$
- c>a>0이므로 $c^2-a^2=b^2$ 이라 하면 $b^2x^2-a^2y^2=a^2b^2$
- 이 식의 양변을 a^2b^2 으로 나누면 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$

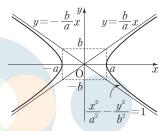


03 쌍곡선

3. 쌍곡선의 점근선

곡선 위의 점이 한없이 가까워지는 직선을 점근선이라 한다

- (1) 쌍곡선 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ 의 점근선의 방정식은 $y = \frac{b}{a}x$, $y = -\frac{b}{a}x$
- (2) 쌍곡선 $\frac{x^2}{a^2} \frac{y^2}{b^2} = -1$ 의 점근선의 방정식은 $y = \frac{b}{a}x$, $y = -\frac{b}{a}x$



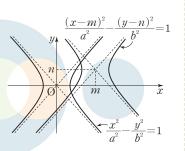
4. 쌍곡선의 평행이동

쌍곡선 $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$ 을 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 쌍곡선의 방정식은

$$\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = 1$$

이다. 이때 두 쌍곡선 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, $\frac{(x-m)^2}{a^2}-\frac{(y-n)^2}{b^2}=1$ 의 초점, 꼭짓점, 중심의 좌표와 점근선의 방정식 은 다음과 같다.

방정식	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = 1$
초점	$(\sqrt{a^2+b^2}, 0), (-\sqrt{a^2+b^2}, 0)$	$(\sqrt{a^2+b^2}+m, n), (-\sqrt{a^2+b^2}+m, n)$
꼭짓점	(a, 0), (-a, 0)	(a+m, n), (-a+m, n)
중심	(0, 0)	(<i>m</i> , <i>n</i>)
점근선	$y = \frac{b}{a}x, y = -\frac{b}{a}x$	$y-n = \frac{b}{a}(x-m), y-n = -\frac{b}{a}(x-m)$



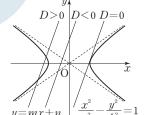
- (1) 쌍곡선 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=-1$ 을 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 쌍곡선 $\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = -1$ 의 초점, 꼭짓점, 중심의 좌표와 점근선의 방정식도 평행이동을 이용하여 구할 수 있다.
 - (2) 쌍곡선을 평행이동하여도 그 모양과 크기는 변하지 않으므로 주축의 길이는 변하지 않는다. 즉, 쌍곡선 $\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = 1$ 의 주축의 길이는 2a이다.

5. 쌍곡선과 직선의 위치 관계

쌍곡선과 직선의 방정식을 각각 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, y = mx + n이라 할 때, y = mx + n을 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 에 대입하여 정 리하면

$$(a^2m^2-b^2)x^2+2a^2mnx+a^2(n^2+b^2)=0$$

따라서 $a^2m^2-b^2\neq 0$ 일 때. x에 대한 이차방정식 \bigcirc 의 판별식을 D라 하면 쌍곡선과 직선의 위치 관계는 다음과 같다.



- (1) D>0 ⇔ 서로 다른 두 점에서 만난다.
- (2) $D=0 \iff$ 한 점에서 만난다. (접한다.)
- (3) *D*<0 ⇔ 만나지 않는다.

03 쌍곡선

6. 쌍곡선의 접선

- (1) 기울기가 주어진 쌍곡선의 접선의 방정식
 - ① 쌍곡선 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ 에 접하고 기울기가 m인 직선<mark>의 방</mark>정식은

$$y=mx\pm\sqrt{a^2m^2-b^2}$$
 (단, $a^2m^2-b^2>0$)

② 쌍곡선 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ 에 접하고 기울기가 m인 직선의 방정식은

$$y = mx \pm \sqrt{b^2 - a^2m^2}$$
 (단, $b^2 - a^2m^2 > 0$)

설명 쌍곡선 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 에 접하고 기울기가 m인 직선의 방정식을 구해 보자.

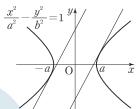
구하는 접선의 방정식을 y=mx+n이라 하고, 쌍곡선의 방정식 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 에 대입하여 정리하면

$$(a^2m^2-b^2)x^2+2a^2mnx+a^2(n^2+b^2)=0$$

x에 대한 이차방정식 \bigcirc 의 판별식을 D라 하면

$$D = 4a^2b^2(-a^2m^2 + n^2 + b^2) = 0$$

이때 $a \neq 0$ $b \neq 0$ 이므로 $n^2 = a^2 m^2 - b^2$ 에서 $a^2 m^2 - b^2 > 0$ 이면 $n = +\sqrt{a^2 m^2 - b^2}$ 따라서 구하는 접선의 방정식은 $y=mx\pm\sqrt{a^2m^2-b^2}$



- (2) 쌍곡선 위의 점에서의 접선의 방정식
 - ① 쌍곡선 $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1$ 위의 점 (x_1, y_1) 에서의 접선의 방정식은 $\frac{x_1x}{a^2} \frac{y_1y}{h^2} = 1$
 - ② 쌍곡선 $\frac{x^2}{a^2} \frac{y^2}{b^2} = -1$ 위의 점 (x_1, y_1) 에서<mark>의 접선의</mark> 방정식은 $\frac{x_1x}{a^2} \frac{y_1y}{b^2} = -1$
 - 설명) 쌍곡선 $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1$ 위의 점 $\mathrm{P}(x_1, y_1)$ 에서의 접선의 방정식을 구해 보자.

 $y_1 \neq 0$ 일 때 접선의 기울기를 $m(m \neq 0)$ 이라 하면 직선의 방정식은

$$y-y_1=m(x-x_1)$$

또 쌍곡선 $\frac{x^2}{\sigma^2} - \frac{y^2}{h^2} = 1$ 에 접하고 기울기가 m인 직선의 방정식은

$$y=mx\pm\sqrt{a^2m^2-b^2}$$

©의 2개의 직선 중 하나가 ③과 같은 직선이므로 y절편의 제곱이 같다.

$$\stackrel{\scriptstyle \Xi_1}{\dashv}, \ (-mx_1+y_1)^2 = a^2m^2 - b^2 \text{ on } \ (x_1^2-a^2)m^2 - 2x_1y_1m + (y_1^2+b^2) = 0 \qquad \cdots \cdots \ \textcircled{e}$$

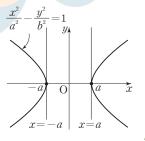
$$\frac{{{x_1}^2}}{{{a^2}}} - \frac{{{y_1}^2}}{{{b^2}}} = 1$$
에서 ${x_1}^2 - {a^2} = \frac{{{a^2}{y_1}^2}}{{{b^2}}}$, ${y_1}^2 + {b^2} = \frac{{{b^2}{x_1}^2}}{{{a^2}}}$ 이므로 이를 ©에 대입하여 정리하면

$$\left(\frac{a}{b}y_1m - \frac{b}{a}x_1\right)^2 = 0, \stackrel{\geq}{\neg} m = \frac{b^2x_1}{a^2y_1}$$

이를 $^{\circ}$ 에 대입하고 $\frac{{x_1}^2}{{a^2}} - \frac{{y_1}^2}{{h^2}} = 1$ 임을 이용하여 이 직선의 방정식을 정리하면

$$\frac{x_1x}{a^2} - \frac{y_1y}{b^2} = 1$$

한편, $y_1 = 0$ 일 때 $x_1 = a$, $x_1 = -a$ 이므로 이 식에 대입하면 접선의 방정식은 각각 x=a, x=-a이고, 그림과 같이 쌍곡선 위의 두 점 (a, 0), (-a, 0)에서의 접선 이 각각 직선 x=a, x=-a이므로 $y_1=0$ 일 때에도 이 식은 성립한다.



1. 벡터의 정의

크기와 방향을 모두 가지는 양을 벡터라 하고, 특히 평면 위의 벡터를 평면벡터라 하다

.•B(종점) \overrightarrow{AB} A (시점)

방향이 점 A에서 점 B를 향하고, 크기가 선분 AB의 길이인 벡터를 벡터 AB라 하고, 기호로

 \overrightarrow{AB}

와 같이 나타낸다. 이때 점 A를 벡터 \overrightarrow{AB} 의 시점. 점 B를 벡터 \overrightarrow{AB} 의 종점이라 한다. 또 벡터 \overrightarrow{AB} 의 크기를 기 호로

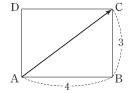
 $|\overline{AB}|$

와 같이 나타낸다.

한편. 벡터를 한 문자로 나타낼 때에는 \vec{a} , \vec{b} , \vec{c} , …와 같이 나타내고 벡터의 크기는 $|\vec{a}|$, $|\vec{b}|$, $|\vec{c}|$, …와 같이 나 타내다

(참고) 속도, 가속도, 물체에 작용하는 힘 등은 크기와 방향을 함께 표시해야 바르게 나타낼 수 있는 양으로 이는 벡터를 이용 하여 나타낼 수 있다.

예 그림과 같이 $\overline{AB}=4$. $\overline{BC}=3$ 인 직사각형 ABCD에서 벡터 \overrightarrow{AC} 는 시점이 A, 종점이 C인 벡터이고 벡터 \overrightarrow{AC} 의 크기는 $|\overrightarrow{AC}| = 5$ 이다.



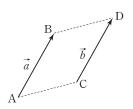
2. 서로 같은 벡터

두 벡터 \overrightarrow{AB} . \overrightarrow{CD} 의 크기와 방향이 모두 같을 때, 두 벡터는 서로 같다고 하고 기호로 $\overrightarrow{AB} = \overrightarrow{CD}$

와 같이 나타낸다

이다.

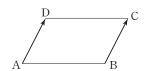
특히. \overrightarrow{AB} . \overrightarrow{CD} 를 한 문자로 각각 \overrightarrow{a} . \overrightarrow{b} 로 나타내면 $\vec{a} = \vec{b}$



이다

 $\overrightarrow{AB} = \overrightarrow{CD}$ 이면 두 벡터 \overrightarrow{AB} , \overrightarrow{CD} 는 평행이동에 의하여 겹쳐질 수 있다.

예 그림과 같은 평행사변형 ABCD에서 $\overrightarrow{AD} = \overrightarrow{BC}$



3. 벡터의 덧셈

(1) 벡터의 덧셈

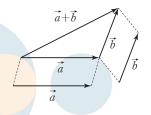
벡터 \overrightarrow{a} 의 종점과 벡터 \overrightarrow{b} 의 시점을 일치시켰을 때. 시점을 벡터 \overrightarrow{a} 의 시점으로 하고 종점을 벡터 \vec{b} 의 종점으로 하는 벡터를 두 벡터 \vec{a} , \vec{b} 의 합이라 하고 이것을 기호로

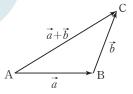
$$\vec{a} + \vec{b}$$

와 같이 나타낸다.

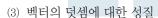
즉, $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{BC}$ 일 때,

 $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$





- (2) 영벡터와 벡터 $-\vec{a}$ 의 뜻
 - ① 크기가 0이고 방향을 고려하지 않는 것을 영벡터라 하고 기호로 $\overrightarrow{0}$ 과 같이 나타낸 다
 - ② 벡터 \vec{a} 와 크기가 같고 방향이 반대인 벡터를 기호로 $-\vec{a}$ 와 같이 나타낸다. 즉. $\vec{a} = \overrightarrow{AB}$ 일 때. $-\vec{a} = \overrightarrow{BA}$ 이다.



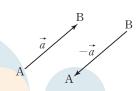
임의의 세 벡터 \vec{a} . \vec{b} . \vec{c} 와 영벡터 $\vec{0}$ 에 대하여

①
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (교환법칙)

②
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
 (결합법칙)

$$\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$$

$$(4)\vec{a} + (-\vec{a}) = (-\vec{a}) + \vec{a} = \vec{0}$$

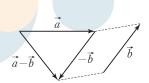


4. 벡터의 뺄셈

두 벡터 \vec{a} , \vec{b} 에 대하여 벡터 \vec{a} 와 벡터 $-\vec{b}$ 의 합 $\vec{a} + (-\vec{b})$ 를 벡터 \vec{a} 에서 벡터 \vec{b} 를 뺀 차라 하고 기호로

$$\vec{a} - \vec{b}$$

와 같이 나타낸다. 즉, $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$ 이다.



5. 벡터의 실수배

(1) 벡터의 실수배

실수 k와 벡터 \vec{a} 의 곱 $k\vec{a}$ 를 벡터 \vec{a} 의 실수배라 하고 다음과 같이 정의한다.

- ① $\vec{a} \neq \vec{0}$ 일 때.
 - (i) k > 0이면 $k\vec{a}$ 는 \vec{a} 와 같은 방향이고 크기는 $k|\vec{a}|$ 인 벡터
 - (ii) k < 0이면 $k\vec{a}$ 는 \vec{a} 와 반대 방향이고 크기는 $|k||\vec{a}|$ 인 벡터

(iii) k=0이면 $k\vec{a}=\vec{0}$

- ② $\vec{a} = \vec{0}$ 일 때, $k\vec{a} = \vec{0}$
- (2) 벡터의 실수배의 성질

두 벡터 \vec{a} , \vec{b} 와 두 실수 k, l에 대하여

- ① $k(\overrightarrow{la}) = (kl)\overrightarrow{a}$ (결합법칙)
- ② $(k+l)\vec{a} = k\vec{a} + l\vec{a}$ (분배법칙)
- ③ $k(\vec{a}+\vec{b}) = k\vec{a}+k\vec{b}$ (분배법칙)
- (3) 벡터의 실수배와 단위벡터
 - ① 단위벡터의 뜻 크기가 1인 벡터를 단위벡터라 한다.
 - ② 벡터의 실수배와 단위벡터 영벡터가 아닌 벡터 $\stackrel{\rightarrow}{a}$ 에 대하여 벡터 $\stackrel{\rightarrow}{a}$ 와 방향이 같은 단위벡터는 $\stackrel{\rightarrow}{a}$ 이다

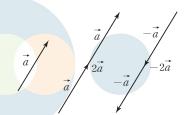
① 벡터의 평행의 뜻

영벡터가 아닌 두 벡터 \vec{a} , \vec{b} 가 방향이 같거나 반대일 때, 두 벡터 \vec{a} , \vec{b} 는 평행하다고 하고 기호로

 $\vec{a}/\!\!/\vec{b}$

와 같이 나타낸다.

- ② 벡터의 실수배와 평행 영벡터가 아닌 두 벡터 \vec{a} , \vec{b} 와 0이 아닌 실수 k에 대하여 \vec{a} $\#\vec{b}$ \iff $\vec{b} = k\vec{a}$
- 참고 서로 다른 세 점 A, B, C와 0이 아닌 실수 k에 대하여 A, B, C가 한 직선 위에 있다. \iff $\overrightarrow{AB} = k\overrightarrow{AC}$
- 참고 영벡터가 아닌 두 벡터 \vec{a} , \vec{b} 가 평행하지 않을 때, $k\vec{a}+l\vec{b}=m\vec{a}+n\vec{b}\Longleftrightarrow k=m, l=n$ (단, k,l,m,n은 실수이다.)



6. 위치벡터

(1) 위치벡터

평면에서 정해진 점 O를 시점으로 하는 벡터 \overrightarrow{OA} 를 점 O에 대한 점 A의 위치벡터라 한다.

(설명) 평면에서 벡터의 시점을 한 점 O로 고정시킬 때, 임의의 벡터 \vec{a} 에 대하여 $\vec{a} = \overrightarrow{OA}$ 인 점 A가 유일하게 정해진다. 역으로 임의의 점 A에 대하여 $\overrightarrow{OA} = \overrightarrow{a}$ 인 벡터 \overrightarrow{a} 가 오직 하나로 결정된다.

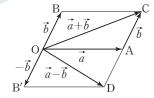
(2) 위치벡터와 덧셈, 뺄셈

평면 위의 두 점 A. B의 위치벡터를 각각 $\vec{a} = \overrightarrow{OA}, \vec{b} = \overrightarrow{OB}$ 라 하자.

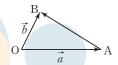
① 덧셈

선분 AB를 대각선으로 하는 평행사변형 OACB에서 $\vec{a} + \vec{b} = \overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OC}$

 $-\vec{b} = \overrightarrow{OB'}$ 일 때. 선분 AB'을 대각선으로 하는 평행사변형 OB'DA에서 $\vec{a} - \vec{b} = \overrightarrow{OA} - \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{OB'} = \overrightarrow{OD}$



- (3) 위치벡터의 활용
 - ① 평면 위의 벡터의 위치벡터로의 표현 평면 위의 두 점 A. B의 위치벡터를 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ 라 하면 $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{b} - \overrightarrow{a}$



- 설명 $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$ 이므로 $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA}$ 이다.
- ② 내분점과 외분점

평면 위의 두 점 A. B의 위치벡터를 각각 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ 라 하고, 선분 AB를 $m: n \ (m>0, n>0)$ 으 로 내분하는 점 P의 위치벡터를 $\overrightarrow{OP} = \overrightarrow{p}$. 선분 AB를 $m: n \ (m>0, n>0, m\neq n)$ 으로 외분하는 점 Q의 위치벡터를 $\overrightarrow{OQ} = \overrightarrow{q}$ 라 하면

(i)
$$\vec{p} = \frac{m\vec{b} + n\vec{a}}{m+n}$$

(ii)
$$\vec{q} = \frac{m\vec{b} - n\vec{a}}{m - n}$$

③ 무게중심

평면 위의 한 직선 위에 있지 않은 세 점 A, B, C의 위치벡터를 각각 $\overrightarrow{OA} = \overrightarrow{a}$. $\overrightarrow{OB} = \overrightarrow{b}$. $\overrightarrow{OC} = \overrightarrow{c}$ 라 하고. 삼각형 ABC의 무게중심 G의 위치벡터를 $\overrightarrow{OG} = g$ 라 하면

$$\vec{g} = \frac{\vec{a} + \vec{b} + \vec{c}}{3}$$

7. 평면벡터의 성분

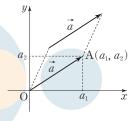
(1) 평면벡터의 성분

좌표평면에서 원점 O를 시점으로 하고 점 $A(a_1, a_2)$ 를 종점으로 하는 위치벡터 $\vec{a} = \overrightarrow{OA} = \vec{A}$

$$\vec{a} = (a_1, a_2)$$

와 같이 나타낸다.

이때 두 실수 a_1 , a_2 를 벡터 \overrightarrow{a} 의 성분이라 하고, a_1 , a_2 를 각각 벡터 \overrightarrow{a} 의 x성분, y성 분이라고 한다.



설명 좌표평면 위의 두 점 $E_1(1, 0)$, $E_2(0, 1)$ 의 위치벡터를 각각 $\overrightarrow{OE_1} = \overrightarrow{e_1}$, $\overrightarrow{OE_2} = \overrightarrow{e_2}$ 라 하면 점 $A(a_1, a_2)$ 에 대하여 $\overrightarrow{OA} = a_1 \overrightarrow{e_1} + a_2 \overrightarrow{e_2}$

와 같이 나타낼 수 있다. 이때
$$\vec{a} = \overrightarrow{\mathrm{OA}}$$
를 $\vec{a} = (a_1, \, a_2)$

와 같이 나타낸다.

(2) 평면벡터의 성분과 연산

두 평면벡터 $\vec{a} = (a_1, a_2), \vec{b} = (b_1, b_2)$ 에 대하여

①
$$\exists 7$$
: $|\vec{a}| = \sqrt{a_1^2 + a_2^2}$

② 두 벡터가 서로 같을 조건:
$$\vec{a} = \vec{b} \iff a_1 = b_1$$
이고 $a_2 = b_2$

③ 덧셈:
$$\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2)$$

④ 뺄셈:
$$\vec{a} - \vec{b} = (a_1 - b_1, a_2 - b_2)$$

⑤ 실수배:
$$\vec{ka} = (ka_1, ka_2)$$
 (단, k 는 실수이다.)

설명 좌표평면에서 원점을 O, 두 점을 $A(a_1, a_2)$, $B(b_1, b_2)$ 라 하자.

① 벡터
$$\overrightarrow{a}$$
의 크기는 선분 OA의 길이이므로 $|\overrightarrow{a}| = \overrightarrow{OA} = \sqrt{a_1^2 + a_2^2}$

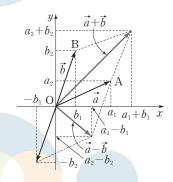
②
$$\vec{a}=\vec{b}$$
이면 종점이 같으므로 $a_1=b_1,\ a_2=b_2$ 이다.
역도 성립한다.

$$\vec{3} \vec{a} + \vec{b} = (a_1 \vec{e_1} + a_2 \vec{e_2}) + (b_1 \vec{e_1} + b_2 \vec{e_2})$$

$$= (a_1 + b_1)\vec{e_1} + (a_2 + b_2)\vec{e_2}$$

$$= (a_1 + b_1, a_2 + b_2)$$

(5)
$$\vec{ka} = k(\vec{a_1e_1} + \vec{a_2e_2}) = k\vec{a_1e_1} + k\vec{a_2e_2} = (ka_1, ka_2)$$



1. 벡터의 내적

(1) 두 벡터가 이루는 각의 크기

영벡터가 아닌 두 평면벡터 \vec{a} , \vec{b} 에 대하여 임의의 한 점 O를 시점으로 하여 $\vec{a} = \overrightarrow{OA}$ $\vec{b} = \overrightarrow{OB}$ 가 되도록 두 점 A. B를 정할 때.

$$\vec{b}$$
 \vec{b}
 \vec{b}
 \vec{b}
 \vec{b}
 \vec{b}
 \vec{b}
 \vec{a}
 \vec{a}
 \vec{a}

$$\angle AOB = \theta (0^{\circ} \le \theta \le 180^{\circ})$$

를 두 벡터 \vec{a} . \vec{b} 가 이루는 각의 크기라 한다.

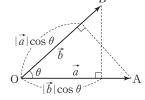
(2) 벡터의 내적

영벡터가 아닌 두 벡터 \vec{a} , \vec{b} 가 이루는 각의 크기가 θ 일 때,

$$\begin{cases} |\vec{a}| \, |\vec{b}| \cos \theta & (0^\circ \leq \theta \leq 90^\circ) \\ -|\vec{a}| \, |\vec{b}| \cos (180^\circ - \theta) & (90^\circ < \theta \leq 180^\circ) \end{cases}$$

를 두 벡터 \vec{a} 와 \vec{b} 의 내적이라 하고. 이것을 기호로 $\vec{a} \cdot \vec{b}$ 와 같이 나타낸다.

참고 ① 〈수학 I〉에서 공부한 삼각함수를 이용하면 위의 내적을 다음과 같이 가단히 나 타낼 수 있다.



 $B(b_1, b_2)$

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

이때 \vec{a} 와 \vec{b} 의 내적은 $|\vec{a}|$ 와 $|\vec{b}|\cos\theta$ 또는 $|\vec{a}|\cos\theta$ 와 $|\vec{b}|$ 의 곱이다.

- ② $\vec{a} = \vec{0}$ 또는 $\vec{b} = \vec{0}$ 일 때에는 $\vec{a} \cdot \vec{b} = 0$ 으로 정한다.
- (3) 벡터의 성부과 내적

두 평면벡터 $\vec{a} = (a_1, a_2)$. $\vec{b} = (b_1, b_2)$ 에 대하여

$$\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2$$

설명 좌표평면에서 영벡터가 아닌 두 평면벡터 $\vec{a} = (a_1, a_2), \vec{b} = (b_1, b_2)$ 가 이루는 각의 크기를 θ (0°< θ <90°)라 하고 A(a_1 , a_2), B(b_1 , b_2)라 하자.

적 B에서 직선 OA에 내린 수선의 발을 H라 하면 직각삼각형 BHA에서

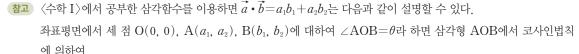
$$\overline{\rm AB}^2 \!\!=\!\! (\overline{\rm OB}\sin\theta)^2 \!\!+\! |\overline{\rm OA} \!\!-\! \overline{\rm OB}\cos\theta|^2$$

이를 정리하면 $\overline{AB}^2 = \overline{OA}^2 + \overline{OB}^2 - 2 \times \overline{OA} \times \overline{OB} \cos \theta$

그러므로
$$(b_1-a_1)^2+(b_2-a_2)^2=(a_1^2+a_2^2)+(b_1^2+b_2^2)-2(\overrightarrow{a}\cdot\overrightarrow{b})$$

이를 정리하면 $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2$

이 식은 $\theta=0^\circ$, $90^\circ \le \theta \le 180^\circ$ 일 때에도 성립하고 $\vec{a}=\vec{0}$ 또는 $\vec{b}=\vec{0}$ 일 때에도 성립하다.



$$\overline{AB}^2 = \overline{OA}^2 + \overline{OB}^2 - 2 \times \overline{OA} \times \overline{OB} \cos \theta$$

$$(b_1-a_1)^2+(b_2-a_2)^2=(a_1^2+a_2^2)+(b_1^2+b_2^2)-2\times\overline{\mathrm{OA}}\times\overline{\mathrm{OB}}\cos\theta$$

그러므로 $\overline{OA} \times \overline{OB} \cos \theta = a_1b_1 + a_2b_2$

 $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2$

2. 벡터의 내적의 성질

(1) 벡터의 내적의 성질

세 평면벡터 \vec{a} , \vec{b} , \vec{c} 와 실수 k에 대하여

- ① $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (교환법칙)
- ② $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (분배법칙)
- $(3)(\vec{ka}) \cdot \vec{b} = \vec{a} \cdot (\vec{kb}) = k(\vec{a} \cdot \vec{b})$
- (2) 벡터의 크기와 내적
 - ① $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
 - $(2) |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$
 - $(3) |\vec{a} \vec{b}|^2 = |\vec{a}|^2 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$
 - $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = |\vec{a}|^2 |\vec{b}|^2$
 - 설명 ① 두 벡터 \vec{a} 와 \vec{a} 가 이루는 각의 크기는 0° 이므로 $\vec{a} \cdot \vec{a} = |\vec{a}| |\vec{a}| \cos 0^\circ = |\vec{a}|^2$
 - $(2) |\vec{a} + \vec{b}|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$
 - $(3) |\vec{a} \vec{b}|^2 = (\vec{a} \vec{b}) \cdot (\vec{a} \vec{b}) = \vec{a} \cdot \vec{a} \vec{a} \cdot \vec{b} \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = |\vec{a}|^2 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$
 - $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = \vec{a} \cdot \vec{a} \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} \vec{b} \cdot \vec{b} = |\vec{a}|^2 |\vec{b}|^2$

3. 두 평면벡터가 이루는 각의 크기

(1) 두 벡터가 이루는 각의 크기

평면 위의 영벡터가 아닌 두 벡터 \vec{a} , \vec{b} 가 이루는 각의 크기가 θ (0° $\leq \theta \leq 180$ °)일 때

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

(2) 벡터의 성분과 두 벡터가 이루는 각의 크기

좌표평면 위의 영벡터가 아닌 두 벡터 $\vec{a}=(a_1,\,a_2),\,\vec{b}=(b_1,\,b_2)$ 가 이루는 각의 크기가 θ $(0^\circ \le \theta \le 180^\circ)$ 일 때

$$\cos\theta = \frac{a_1b_1 + a_2b_2}{\sqrt{a_1^2 + a_2^2}\sqrt{b_1^2 + b_2^2}}$$

4. 두 평면벡터의 평행, 수직

(1) 두 평면벡터의 평행, 수직

평면 위의 영벡터가 아닌 두 벡터 \vec{a} . \vec{b} 에 대하여

①
$$\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$$

$$(2) \vec{a} / / \vec{b} \iff \vec{a} \cdot \vec{b} = + |\vec{a}| |\vec{b}|$$

(2) 벡터의 성분과 두 벡터의 평행, 수직

좌표평면에서 영벡터가 아닌 두 벡터 $\vec{a}=(a_1,\,a_2),\,\vec{b}=(b_1,\,b_2)$ 에 대하여

$$(1) \vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 = 0$$

$$② \vec{a} / / \vec{b} \iff \vec{a} \cdot \vec{b} = \pm \sqrt{a_1^2 + a_2^2} \sqrt{b_1^2 + b_2^2}$$

참고 두 벡터가 이루는 각의 크기가 90° 일 때, 두 벡터 \vec{a} , \vec{b} 는 서로 수직이라 하고 기호로 $\vec{a} \perp \vec{b}$ 와 같이 나타낸다.

5. 직선의 방정식

(1) 방향벡터가 주어진 직선의 방정식

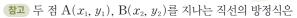
젂 \mathbf{A} 를 지나고 방향벡터가 \vec{d} 인 직선 l 위의 점을 \mathbf{P} 라 하면 직선 l의 방정식은 다음과 같다.

① 두 점 A. P의 위치벡터를 각각 \overrightarrow{a} . \overrightarrow{b} 라 하면

$$\vec{p} = \vec{a} + t\vec{d}$$
 (t는 실수)

② 두 점 A. P의 좌표를 각각 $(x_1, y_1), (x, y)$ 라 하고 $\vec{d} = (a, b)$ 라 하면

$$\frac{x-x_1}{a} = \frac{y-y_1}{b}$$
 (단, $ab \neq 0$)



$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$$
 (단, $x_1 \neq x_2$, $y_1 \neq y_2$)

- 예 직선 $\frac{x}{2} = \frac{y-1}{3}$ 의 방향벡터 중 하나는 $\vec{d} = (2, 3)$ 이다.
- (2) 법선벡터가 주어진 직선의 방정식

젂 A를 지나고 법선벡터가 \vec{n} 인 직선 l 위의 점을 P라 하면 직선 l의 방정식은 다음과 같다.

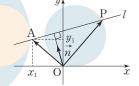
① 두 점 A. P의 위치벡터를 각각 \vec{a} . \vec{b} 라 하면

$$(\vec{p}-\vec{a}) \cdot \vec{n}=0$$

② 두 점 A. P의 좌표를 각각 (x_1, y_1) , (x, y)라 하고, $\vec{n} = (a, b)$ 라 하면

$$a(x-x_1)+b(y-y_1)=0$$

예 직선 2x+3y=4의 법선벡터 중 하나는 $\vec{n}=(2,3)$ 이다.



(3) 두 직선이 이루는 각의 크기

두 직선 l_1 , l_2 의 방향벡터를 각각 $\overrightarrow{d_1} = (a_1, b_1)$, $\overrightarrow{d_2} = (a_2, b_2)$ 라 할 때

① 두 직선 l_1 , l_2 가 이루는 각의 크기를 θ $(0^\circ \le \theta \le 90^\circ)$ 라 하면

$$\cos\theta = \frac{|\overrightarrow{d_1} \cdot \overrightarrow{d_2}|}{|\overrightarrow{d_1}| |\overrightarrow{d_2}|} = \frac{|a_1 a_2 + b_1 b_2|}{\sqrt{a_1^2 + b_1^2} \sqrt{a_2^2 + b_2^2}}$$

② 두 직선 l_1 , l_2 가 서로 평행하면 0이 아닌 어떤 실수 k에 대하여

$$\overrightarrow{d_1} = k\overrightarrow{d_2}, \stackrel{\sim}{=} (a_1, b_1) = k(a_2, b_2)$$

- 참고 $\overrightarrow{d_1} = k \overrightarrow{d_2}$ 이면 두 직선 l_1 , l_2 는 서로 평행하다.
- ③ 두 직선 l_1 , l_2 가 서로 수직이면

$$\overrightarrow{d_1} \cdot \overrightarrow{d_2} = 0, \stackrel{\leq}{=} a_1 a_2 + b_1 b_2 = 0$$

참고 $\overrightarrow{d_1} \cdot \overrightarrow{d_2} = 0$ 이면 두 직선 l_1 , l_2 는 서로 수직이다.

6. 원의 방정식

평면 위의 점 A를 중심으로 하고 반지름의 길이가 r인 원 C 위의 한 점을 P라 하면 원 C의 방정식은 다음과 같다.

(1) 두 점 A, P의 점 O에 대한 위치벡터를 각각 $\vec{a} = \overrightarrow{OA}$, $\vec{p} = \overrightarrow{OP}$ 라 하면

$$|\vec{p}-\vec{a}|=r, \leq (\vec{p}-\vec{a}) \cdot (\vec{p}-\vec{a})=r^2$$

(2) 두 점 A, P의 좌표를 각각 $(x_1, y_1), (x, y)$ 라 하면

$$(x-x_1, y-y_1) \cdot (x-x_1, y-y_1) = r^2$$

설명 점 A를 중심으로 하고 반지름의 길이가 r인 원 위의 한 점을 P라 하면

$$|\overrightarrow{AP}| = r$$

이때 두 점 A, P의 위치벡터를 각각 \overrightarrow{a} , \overrightarrow{p} 라 하면

$$\overrightarrow{AP} = \overrightarrow{p} - \overrightarrow{a}$$

이므로 ①은

$$|\vec{p} - \vec{a}| = r$$

이때 양변을 제곱하면

$$|\vec{p} - \vec{a}|^2 = r^2$$

$$(\vec{p}-\vec{a}) \cdot (\vec{p}-\vec{a}) = r^2$$

또 두 점 A, P의 좌표를 각각 $(x_1, y_1), (x, y)$ 라 하면

$$\vec{p} - \vec{a} = (x - x_1, y - y_1)$$

이므로 ()은

$$(x-x_1, y-y_1) \cdot (x-x_1, y-y_1) = r^2$$

$$\leq (x-x_1)^2+(y-y_1)^2=r^2$$

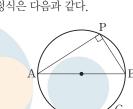
$$(2)(\vec{p}-\vec{a}) \cdot (\vec{p}-\vec{a}) = 4$$
를 만족시키는 점 P가 나타내는 도형은 중심이 $A(1,2)$ 이고 반지름의 길이가 2인 원이다.

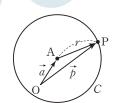
(참고) 두 점 A. B에 대하여 선분 AB를 지름으로 하는 원 C 위의 한 점을 P라 하면 원 C의 방정식은 다음과 같다.

(1) 세 점 A, B, P의 위치벡터를 각각
$$\vec{a}$$
, \vec{b} , \vec{p} 라 하면 $\overrightarrow{AP} \cdot \overrightarrow{BP} = 0$ 이므로 $(\vec{p} - \vec{a}) \cdot (\vec{p} - \vec{b}) = 0$

(2) 세 점 A, B, P의 좌표를 각각 $(x_1, y_1), (x_2, y_2), (x, y)$ 라 하면

$$(x-x_1, y-y_1) \cdot (x-x_2, y-y_2) = 0$$





P(x, y)

1. 공간에서 직선과 평면의 위치 관계

- (1) 평면의 결정 조건
 - ① 한 직선 위에 있지 않은 서로 다른 세 점 ② 한 직선과 그 위에 있지 않은 한 점

③ 한 점에서 만나는 두 직선

④ 평행한 두 직선

- (2) 서로 다른 두 직선의 위치 관계
 - ① 한 점에서 만난다.
- ② 평행하다.

③ 꼬인 위치에 있다.

- (3) 직선과 평면의 위치 관계
 - ① 포함된다.

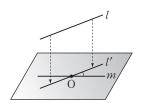
- ② 한 점에서 만난다.
- ③ 평행하다.

- (4) 서로 다른 두 평면의 위치 관계
 - ① 만난다.

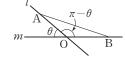
- ② 평행하다.
- **참고** ① 서로 다른 두 평면이 만나서 생기는 도형은 직선이고 이 직선을 두 평면의 교선이라 한다.
 - ② 서로 다른 두 평면 α , β 가 만나지 않을 때, 두 평면은 서로 평행하다고 하고 기호로 $\alpha //\beta$ 와 같이 나타낸다.

2. 공간에서 두 직선이 이루는 각

두 직선 l. m이 꼬인 위치에 있을 때. 직선 m 위에 한 점 O를 잡고. 점 O를 지나고 직 선 l에 평행한 직선 l'을 그으면 두 직선 l', m은 점 O에서 만나므로 한 평면을 결정한 다. 이때 두 직선 l'. m이 이루는 각을 두 직선 l. m이 이루는 각이라 한다.



*AD ① 일반적으로 두 직선이 이루는 각은 크기가 크지 않은 것을 택한다. 그림과 같이 두 직선 l. m이 이루는 각의 크기는 θ (0°< θ \leq 90°)와 $\pi - \theta$ 중에서 θ 를 택한다. 그런데 두 직선 l. m의 교점 O. 직선 l 위의 점 A. 직선 m 위의 점 B에 대하여 둔각삼각형 AOB에 코 사인법칙을 적용해서 두 직선 l. m이 이루는 각의 크기 θ 를 구할 경우 $\cos(\pi - \theta) = -\cos\theta$ 를 이용한다.

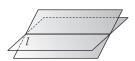


② 두 직선이 이루는 각이 직각일 때 두 직선 l. m은 서로 수직이라 하고, 기호로 $l \perp m$ 과 같이 나타낸다.

3. 공간에서 직선과 평면의 평행

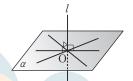
- (1) 두 직선 l, m이 서로 평행할 때, 직선 l을 포함하고 직선 m을 포함하지 않는 모든 평면은 직선 m과 평행하다.
- (2) 두 평면 α , β 가 서로 평행할 때, 평면 α 위에 있는 모든 직선은 평면 β 와 평행하다.

(1) m-



4. 공간에서 직선과 평면의 수직 관계

공간에서 직선 l과 평면 α 위의 모든 직선이 수직일 때, 직선 l은 평면 α 와 수직이라 하 고. 기호로 $l \perp \alpha$ 와 같이 나타낸다. 이때 직선 l을 평면 α 의 수선. 직선 l과 평면 α 가 만 나는 점 O를 수선의 발이라 한다.

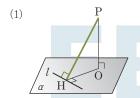


참고 직선 l이 평면 α 위의 평행하지 않은 서로 다른 두 직선과 각각 수직이면 $l \perp \alpha$ 이다.

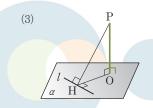
5. 삼수선의 정리

평면 α 위에 있지 않은 한 점 P. 평면 α 위의 한 점 O. 평면 α 에 포함되고 점 O를 지나지 않는 한 직선 l. 직선 l위의 한 점 H에 대하여 다음과 같은 세 가지 성질이 성립한다. 이를 삼수선의 정리라 한다.

- (1) $\overline{PO} \perp \alpha$, $\overline{OH} \perp l$ 이면 $\overline{PH} \perp l$
- (2) $\overline{PO} \perp \alpha$, $\overline{PH} \perp l$ 이면 $\overline{OH} \perp l$
- (3) $\overline{PH} \perp l$, $\overline{OH} \perp l$, $\overline{PO} \perp \overline{OH}$ 이면 $\overline{PO} \perp \alpha$

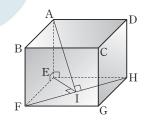






- 설명 (1) $\overline{PO} \perp \alpha$ 이므로 직선 \overline{PO} 는 평면 α 위의 모든 직선과 수직이다.
 - 이때 직선 l은 평면 α 에 포함되므로 $\overline{PO} \perp l$ 이다.
 - 또한 $\overline{OH} \perp l$ 이므로 직선 l은 직선 PO와 직선 OH를 포함하는 평면 PHO와 수직이다.
 - 이때 직선 PH는 평면 PHO에 포함되고, 직선 l은 평면 PHO 위에 있는 모든 직선과 수직이므로 $\overline{PH} \perp l$ 이다.
 - (2) $\overline{PO} \perp \alpha$ 이므로 직선 PO는 평면 α 위의 모든 직선과 수직이다.
 - 이때 직선 l은 평면 α 에 포함되므로 $\overline{PO} \perp l$ 이다.
 - 또한 $\overline{PH} \perp l$ 이므로 직선 l은 직선 PO와 직선 PH를 포함하는 평면 PHO와 수직이다.
 - 이때 직선 OH는 평면 PHO에 포함되고, 직선 l은 평면 PHO 위에 있는 모든 직선과 수직이므로 $\overline{OH} \perp l$ 이다.
 - (3) $\overline{PH} \perp l$, $\overline{OH} \perp l$ 이므로 직선 l은 직선 PH와 직선 OH를 포함하는 평면 PHO와 수직이다.
 - 이때 직선 PO는 평면 PHO에 포함되고, 직선 l은 평면 PHO 위에 있는 모든 직선과 수직이므로 $\overline{PO} \perp l$ 이다. 또한 $\overline{PO} \perp \overline{OH}$ 이므로 직선 PO는 직선 OH와 직선 l을 포함하는 평면 α 와 수직이다.
 - 즉, $\overline{PO} \perp \alpha$ 이다.
- 예 그림과 같은 직육면체 ABCD-EFGH의 한 꼭짓점 A에서 선분 FH에 내린 수선의 발 을 I라 하자.

 $\overline{AE}\bot\overline{EF}$. $\overline{AE}\bot\overline{EH}$ 이므로 $\overline{AE}\bot$ (평면 \overline{EFGH})이고 $\overline{AI}\bot\overline{FH}$ 이므로 삼수선의 정리 (2)에 의하여 $\overline{EI} \perp \overline{FH}$ 이다.



6. 이면각

(1) 반평면

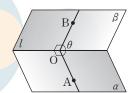
평면 위의 한 직선은 그 평면을 두 부분으로 나누는데, 그 각각을 반평면이라 한다.

(2) 이면각

직선 l을 공유하는 두 개의 반평면 α , β 로 이루어진 도형을 이면각이라 한다. 이때 직선 l을 이면각의 변, 두 반평면 α , β 를 각각 이면각의 면이라 한다.

(3) 이면각의 크기

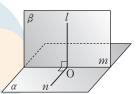
이면각의 변 l 위의 한 점 O를 지나고 직선 l에 수직인 두 반직선 OA, OB를 각각 반평면 α , β 위에 그을 때, $\angle AOB$ 의 크기는 점 O의 위치에 관계없이 일정하다. 이 일정한 각의 크기 θ 를 이면각의 크기라 한다.



(4) 두 평면이 이루는 각

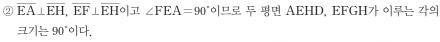
서로 다른 두 평면이 만나서 생기는 이면각 중에서 크기가 크지 않은 한 이면각의 크기를 두 평면이 이루는 각 의 크기라 한다.

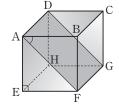
- (참고) ① 두 평면 α , β 에서 이면각의 크기가 90° 일 때, 두 평면 α , β 는 서로 수직이라 하고, 기호로 $\alpha\perp\beta$ 와 같이 나타낸다.
 - ② 직선 l이 평면 α 에 수직일 때, 직선 l을 포함하는 평면 β 는 평면 α 와 수직임을 보이자. 그림과 같이 두 평면 α , β 의 교선을 m이라 하고, 직선 l과 평면 α 의 교점을 O라 하자. 평면 α 위에 점 O를 지나고 직선 m과 수직인 직선 n을 그으면 $l \perp \alpha$ 이므로 $l \perp n$ 이다. 이때 $l \perp m$, $n \perp m$ 이므로 두 평면 α , β 가 이루<mark>는 각</mark>의 크기는 두 직선 l, n이 이루 는 각의 크기이다.



따라서 $\alpha \perp \beta$ 이다.

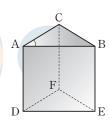
- 예1 그림과 같은 정육면체 ABCD-EFGH에서
 - ① $\overline{AB} \perp \overline{AD}$. $\overline{AF} \perp \overline{AD}$ 이고 $\angle FAB = 45^{\circ}$ 이므로 두 평면 ABCD. AFGD가 이루는 예각 의 크기는 45°이다.





즉. (평면 AEHD)⊥(평면 EFGH)이다.

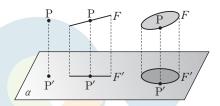
예2 그림과 같이 모든 모서리의 길이가 같은 정삼각기둥 ABC-DEF에서 $\overline{AB}\perp\overline{AD}$, $\overline{AC}\perp\overline{AD}$ 이고 $\angle BAC=60^\circ$ 이므로 두 평면 ADEB, ADFC가 이루는 예각의 크 기는 60°이다.



7. 정사영

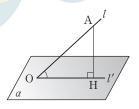
(1) 정사영

한 점 P에서 평면 α 에 내린 수선의 발 P'을 점 P의 평면 α 위로의 정 사영이라 한다. 또한 도형 F에 속하는 각 점의 평면 α 위로의 정사영 전체로 이루어진 도형 F'을 도형 F의 평면 α 위로<mark>의 정사</mark>영이라 한다.



(2) 직선과 평면이 이루는 각

직선 l과 평면 α 가 한 점에서 만나고 수직이 아닐 때, 직선 l의 평면 α 위로의 정사 영 l'과 직선 l이 이루는 각을 직선 l과 평면 α 가 이루는 각이라 한다. 즉, 직선 l이 평면 α 와 점 O에서 만나고 수직이 아닐 때 직선 l 위의 O가 아닌 한 점 A에서 평 면 α에 내린 수선의 발을 H라 하면 직각삼각형 AOH에서 ∠AOH의 크기가 직선 l과 평면 α 가 이루는 각의 크기이다.



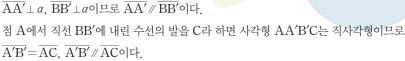
참고 직선 l과 평면 α 가 서로 평행할 때. 직선 l과 평면 α 가 이루는 각의 크기는 0°이다.

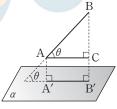
(3) 정사영의 길이

선분 AB의 평면 α 위로의 정사영을 선분 A'B'이라 하고, 직선 AB와 평면 α 가 이루는 각의 크기를 *θ* (0°≤*θ*≤90°)라 하면

 $\overline{A'B'} = \overline{AB} \cos \theta$

(설명) $0^{\circ} < \theta < 90^{\circ}$ 일 때, 선분 AB의 평면 α 위로의 <mark>정사영을 선분 A'B'</mark>이라 하면 $\overline{AA'} \perp \alpha$. $\overline{BB'} \perp \alpha$ 이므로 $\overline{AA'} / / \overline{BB'}$ 이다.





따라서 $\angle BAC = \theta$ 이고 직각삼각형 BAC에서 $\overline{AC} = \overline{AB} \cos \theta$ 이므로

 $\overline{A'B'} = \overline{AB} \cos \theta$

가 성립한다.

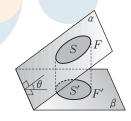
한편. $\theta=0^{\circ}$ 또는 $\theta=90^{\circ}$ 일 때에도

 $\overline{A'B'} = \overline{AB} \cos \theta$

가 성립한다.

(4) 정사영의 넓이

평면 α 위의 도형 F의 평면 β 위로의 정사영을 F'이라 하고, 두 도형 F, F'의 넓이 를 각각 S, S'이라 할 때, 두 평면 α , β 가 이루는 각의 크기가 θ $(0^{\circ} \le \theta \le 90^{\circ})$ 이면 $S' = S \cos \theta$

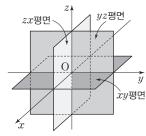


참고 등식 $S' = S \cos \theta \ (0^{\circ} \le \theta < 90^{\circ})$ 는 $S = \frac{S'}{\cos \theta}$ 또는 $\cos \theta = \frac{S'}{S}$ 으로 변형하여 사용 할 수 있다.

1. 공간좌표

(1) 좌표공간

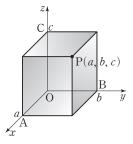
그림과 같이 공간의 한 점 O에서 서로 직교하는 세 수직선을 그어 각각 x축. y축, z축이라 하고, 점 O를 원점이라 한다. 이때 x축, y축, z축을 통틀어 좌표축 이라 하고, 좌표축으로 정해진 공간을 좌표공간이라 한다. 또 x축과 y축을 포함 하는 평면을 xy평면, y축과 z축을 포함하는 평면을 yz평면, z축과 x축을 포함 하는 평면을 zx 평면이라 하고. 이 세 평면을 통틀어 좌표평면이라 한다.



(2) 공간좌표

그림과 같이 좌표공간의 한 점 P에 대하여 점 P를 지나면서 x축, y축, z축과 수직 인 평면이 각각 x축, y축, z축과 만나는 점을 각각 A, B, C라 하자, 이때 세 점 A, B, C의 x축, y축, z축 위에서의 좌표를 각각 a, b, c라 하면 점 P와 세 실수 a, b, c의 순서쌍 (a, b, c)는 일대일로 대응된다.

이와 같이 좌표공간의 점 P에 대응하는 세 실수 a, b, c의 순서쌍 (a, b, c)를 점 P 의 공간좌표라 하고, 기호로 P(a, b, c)와 같이 나타낸다. 이때 a, b, c를 각각 점 P의 x좌표, y좌표, z좌표라 한다.



- (3) 좌표공간의 점 P(a, b, c)의 수선의 발의 좌표
 - ① 점 P(a, b, c)에서 x축, y축, z축에 내린 수선의 발의 좌표는 각각 (a, 0, 0), (0, b, 0), (0, 0, c)
 - ② 점 P(a, b, c)에서 xy평면, yz평면, zx평면에 내린 수선의 발의 좌표는 각각 (a, b, 0), (0, b, c), (a, 0, c)
 - 예 점P(3, 2, 1)에서 x축에 내린 수선의 발의 좌표는 (3, 0, 0), yz평면에 내린 수선의 발의 좌표는 (0, 2, 1)이다.
- (4) 좌표공간의 점 P(a, b, c)를 대칭이동시킨 점의 좌표
 - ① 점 P(a, b, c)를 x축, y축, z축에 대하여 대칭이동시킨 점의 좌표는 각각 (a, -b, -c), (-a, b, -c), (-a, -b, c)
 - ② 점 P(a, b, c)를 xy평면, yz평면, zx평면에 대하여 대칭이동시킨 점의 좌표는 각각 (a, b, -c), (-a, b, c), (a, -b, c)
 - ③ 점 P(a, b, c)를 원점에 대하여 대칭이동시킨 점의 좌표는 (-a, -b, -c)
 - 에 점 P(3, 2, 1)을 x축에 대하여 대칭이동시킨 점의 좌표는 (3, -2, -1), yz평면에 대하여 대칭이동시킨 점의 좌 표는 (-3, 2, 1), 원점에 대하여 대칭이동시킨 점의 좌표는 (-3, -2, -1)이다.

2. 좌표공간의 두 점 사이의 거리

(1) 좌표공간의 두 점 $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ 사이의 거리는

 $\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

(2) 좌표공간의 원점 O와 점 $A(x_1, y_1, z_1)$ 사이의 거리는

 $\overline{OA} = \sqrt{x_1^2 + y_1^2 + z_1^2}$

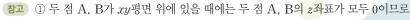
설명 좌표공간의 두 점 $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ 에 대하여 직선 AB가 세 좌표평 면에 평행하지 않는 경우, 그림과 같이 두 점 A, B를 꼭짓점으로 하고 세 좌표평 면에 평행한 6개의 평면으로 이루어진 직육면체를 생각하면 선분 AB는 직육면체 의 대각선이다.

$$|x_2-x_1|, |y_2-y_1|, |z_2-z_1|$$

이므로 두 점 A. B 사이의 거리는 다음과 같다.

$$\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

또한 직선 AB가 세 좌표평면 중 어느 한 평면에 평행한 경우에도 위의 식은 성립한다.



$$\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

즉, 좌표평면 위의 두 점 사이의 거리에 대한 공식과 일치함을 알 수 있다.

② 두 점 A, B가 x축 위에 있을 때에는 두 점 A, B의 y좌표와 z좌표가 모두 0이므로

$$\overline{AB} = \sqrt{(x_2 - x_1)^2} = |x_2 - x_1|$$

즉, 수직선 위의 두 점 사이의 거리에 대한 공식과 일치함을 알 수 있다.

예 ① 두 점 A(3, 2, 1), B(1, 1, -1) 사이의 거리는

$$\overline{AB} = \sqrt{(1-3)^2 + (1-2)^2 + (-1-1)^2} = 3$$

② 원점 O와 점 A(3, 2, 1) 사이의 거리는

$$\overline{OA} = \sqrt{3^2 + 2^2 + 1^2} = \sqrt{14}$$

3. 선분의 내분점과 외분점

- (1) 좌표공간에서 선분의 내분점과 외분점 좌표공간의 두 점 $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ 에 대하여
 - ① 선분 AB = m : n (m > 0, n > 0)으로 내분하는 점의 좌표는

$$\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}, \frac{mz_2+nz_1}{m+n}\right)$$

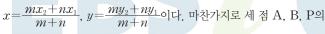
② 선분 AB를 $m: n (m>0, n>0, m \neq n)$ 으로 외분하는 점의 좌표는

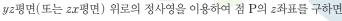
$$\left(\frac{mx_2-nx_1}{m-n}, \frac{my_2-ny_1}{m-n}, \frac{mz_2-nz_1}{m-n}\right)$$

③ 선부 AB의 중점의 좌표는

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

- 설명 좌표공간의 두 점 $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ 에 대하여 선분 AB를 m: n (m>0, n>0)으로 내분하는 점을 P(x, y, z)라 하자. 세 점 A, B, P의 xy 평면 위로의 정사영을 각각 A', B', P'이라 하면 $A'(x_1, y_1, 0), B'(x_2, y_2, 0), P'(x, y, 0)$ $\overline{A'P'}: \overline{P'B'} = \overline{AP}: \overline{PB} = m: n$ 이다.
 - 따라서 선분 A'B'의 내분점의 좌표를 xy평면 위에서 생각하면





$$z=rac{mz_2+nz_1}{m+n}$$
이므로 점 P의 좌표는 $\left(rac{mx_2+nx_1}{m+n}, rac{my_2+ny_1}{m+n}, rac{mz_2+nz_1}{m+n}
ight)$ 이다.

또 두 점 $\mathbf{A}(x_1,\,y_1,\,z_1),\,\mathbf{B}(x_2,\,y_2,\,z_2)$ 를 이은 선분 \mathbf{AB} 를 $m:n\;(m>0,\,n>0,\,m\neq n)$ 으로 외분하는 점의 좌 표도 같은 방법으로 구할 수 있다.

(2) 좌표공간에서 삼각형의 무게중심

좌표공간의 삼각형 ABC에 대하여 $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$, $C(x_3, y_3, z_3)$ 일 때, 삼각형 ABC의 무게 중심의 좌표는

$$\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right)$$

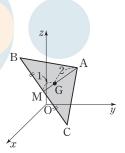
설명 변 BC의 중점을 $M(x_4, y_4, z_4)$ 라 하면 $x_4 = \frac{x_2 + x_3}{2}$, $y_4 = \frac{y_2 + y_3}{2}$, $z_4 = \frac{z_2 + z_3}{2}$

무게중심 G의 좌표를 (x, y, z)라 하면 점 G는 선분 AM을 2:1로 내분하는 점이므로

$$x = \frac{2x_4 + x_1}{2 + 1} = \frac{x_1 + x_2 + x_3}{3}, y = \frac{2y_4 + y_1}{2 + 1} = \frac{y_1 + y_2 + y_3}{3},$$

$$z = \frac{2z_4 + z_1}{2 + 1} = \frac{z_1 + z_2 + z_3}{3}$$

즉,
$$G\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right)$$
이다.



4. 구의 방정식

(1) 구

공간에서 한 정점으로부터 일정한 거리에 있는 점 전체의 집합을 구라 한다. 이때 정점을 구의 중심, 구의 중심 과 구 위의 한 점을 이은 선분을 구의 반지름이라 한다.

(2) 구의 방정식

좌표공간에서 중심이 점 C(a, b, c)이고 반지름의 길이가 r인 구의 방정식은

$$(x-a)^2+(y-b)^2+(z-c)^2=r^2$$

특히 중심이 원점이고 반지름의 길이가 r인 구의 방정식은

$$x^2+y^2+z^2=r^2$$

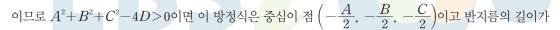
예 ① 중심이 점 (3, 2, 1)이고 반지름의 길이가 5인 구의 방정식은

$$(x-3)^2 + (y-2)^2 + (z-1)^2 = 5^2$$

$$\stackrel{\text{Z}}{=}$$
, $(x-3)^2+(y-2)^2+(z-1)^2=25$

- ② 중심이 원점이고 반지름의 길이가 4인 구의 방정식은 $x^2+y^2+z^2=16$
- (3) 방정식 $x^2+y^2+z^2+Ax+By+Cz+D=0$ 이 나타내는 도형 방정식 $x^2+y^2+z^2+Ax+By+Cz+D=0$ 을 변형하면

$$\left(x+\frac{A}{2}\right)^{2}+\left(y+\frac{B}{2}\right)^{2}+\left(z+\frac{C}{2}\right)^{2}=\frac{A^{2}+B^{2}+C^{2}-4D}{4}$$



$$\frac{\sqrt{A^2+B^2+C^2-4D}}{2}$$
인 구를 나타낸다.

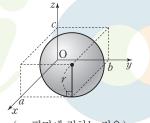
예 방정식 $x^2+y^2+z^2-6x+4y-4z+13=0$ 은

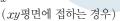
$$(x-3)^2+(y+2)^2+(z-2)^2=2^2$$

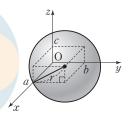
이므로 이 방정식은 중심이 점 (3, -2, 2)이고 반지름의 길이가 2인 구를 나타낸다.

또한 중심의 y좌표가 -2. z좌표가 2이므로 이 구는 zx평면과 xy평면에 동시에 접한다.

- 참고 $7(x-a)^2+(y-b)^2+(z-c)^2=r^2$ 이 좌표평면 또는 좌표축에 접할 조건은 다음과 같다.
 - ① xy평면에 접하는 경우: r=|c|
 - ② yz평면에 접하는 경우: r=|a|
 - ③ zx평면에 접하는 경우: r=|b|
 - ④ x축에 접하는 경우: $r = \sqrt{b^2 + c^2}$
 - ⑤ y축에 접하는 경우: $r = \sqrt{a^2 + c^2}$
 - ⑥ z축에 접하는 경우: $\gamma = \sqrt{a^2 + b^2}$







C(a, b, c)

P(x, y, z)

(x축에 접하는 경우)