2024학년도 Eternal 하프모의고사 1회

수험 번호

\square
\bigcirc 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
\bigcirc 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

그해 겨울은 따듯했네

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 '0'도 답란에 반드시 표시하시오.
\bigcirc 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.

○ 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

○ 공통과독

5지선다형

1. $2^{1+\sqrt{3}} \times 2^{1-\sqrt{3}}$ 의 값은? [2점]
(1) $\frac{1}{4}$
(2) $\frac{1}{2}$
(3) 1
(4) 2
(5) 4
2. $\pi<\theta<2 \pi$ 인 θ 에 대하여 $\tan \theta=2$ 일 때, $\sin \theta+\cos \theta$ 의 값은? [3점]
(1) $-\frac{1}{\sqrt{5}}$
(2) $-\frac{2}{\sqrt{5}}$
(3) $-\frac{3}{\sqrt{5}}$
(4) $-\frac{4}{\sqrt{5}}$
(5) $-\sqrt{5}$
3. 함수 $y=f(x)$ 의 그래프가 다음과 같다.

$\lim _{x \rightarrow 1+} f(x)=a$ 일 때, $\lim _{x \rightarrow a-} f(x)$ 의 값은? [3점]
(1) 1
(2) 2
(3) 3
(4) 4
(5) 5
4. 등차수열 $\left\{a_{n}\right\}$ 의 첫째항부터 제 n 항까지의 합을 S_{n} 이라 하자

$$
S_{6}=a_{6}, a_{2}=3
$$

일 때, a_{10} 의 값은? [3점]
(1) -17
(2) -21
(3) -25
(4) -29
(5) -33
6. 함수 $f(x)=x^{3}-3 x^{2}+a x+b$ 은 $x=0$ 에서 극값 8 을 가진다.

함수 $f(x)$ 의 극솟값은? (단, a, b 는 상수이다.) [3점]
(1) 4
(2) 3
(3) 2
(4) 1
(5) 0
7. 두 실수 a, b 가

$$
a+b=\log _{2} 3, a b=\log _{2} 27
$$

을 만족시킬 때, $\frac{1}{a}+\frac{1}{b}$ 의 값은? [3점]
(1) $\frac{1}{9}$
(2) $\frac{1}{3}$
(3) 1
(4) 3
(5) 9
8. 다항함수 $f(x)$ 가

$$
f(x)=x^{3}+f(1) x^{2}+\int_{-1}^{1} f(x) d x
$$

를 만족시킬 때, $\int_{-2}^{2} f^{\prime}(x) d x$ 의 값은? [3점]
(1) 2
(2) 4
(3) 8
(4) 16
(5) 32
10. 최고차항의 계수가 15 인 삼차함수 $f(x)$ 에 대하여 함수
$g(x)=\int_{0}^{x} t f(t) d t$
가 다음 조건을 만족시킬 때, $g(2)+f(1)$ 의 값은? [4점]
(가) 함수 $g(x)$ 는 실수 전체의 집합에서 증가한다.
(나) 함수 $|g(x)-16|$ 는 실수 전체의 집합에서 미분가능하다.
(1) 30
(2) 31
(3) 32
(4) 33
(5) 34
9. $-\frac{\pi}{2}<x<\frac{\pi}{2}$ 일 때, 부등식

$$
\left|\tan \frac{\pi}{7} \tan x\right| \leq 1
$$

을 만족시키는 모든 x 의 값의 범위는 $\alpha \leq x \leq \beta$ 이다. $\beta-\alpha$ 의 값은? [4점]
(1) $\frac{3 \pi}{7}$
(2) $\frac{\pi}{2}$
(3) $\frac{4 \pi}{7}$
(4) $\frac{9 \pi}{14}$
(5) $\frac{5 \pi}{7}$
11. 두 양수 a, k 에 대하여 직선 $y=-x+k$ 가 두 곡선

$$
y=2^{x+a}, y=\log _{2} x-a
$$

와 만나는 두 점을 각각 A, B 라 하자. $\overline{\mathrm{AB}}=2 \sqrt{2}$ 이고, 삼각형 OAB 의 넓이가 4 일 때, a 의 값은? (단, O 는 원점이다.)
[4점]
(1) $\log _{2} \frac{3}{2}$
(2) $\log _{2} 3$
(3) $\log _{2} 5$
(4) $\log _{2} 6$
(5) $\log _{2} \frac{9}{4}$

