2024학년도 9평 반영 기출 모의고사

성명

수험 번호

\square

○ 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
○ 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

미적분

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 ' 0 '도 답란에 반드시 표시하시오.
\bigcirc 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.

○ 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

- 공통과목
- 선택과목

미적분
9~12쪽

5지선다형

1. $\left(\frac{4}{2^{\sqrt{2}}}\right)^{2+\sqrt{2}}$ 의 값은? [2점]
(1) $\frac{1}{4}$
(2) $\frac{1}{2}$
(3) 1
(4) 2
(5) 4
2. $\pi<\theta<\frac{3}{2} \pi$ 인 θ 에 대하여 $\tan \theta=\frac{12}{5}$ 일 때, $\sin \theta+\cos \theta$ 의 값은? [3점]
(1) $-\frac{17}{13}$
(2) $-\frac{7}{13}$
(3) 0
(4) $\frac{7}{13}$
(5) $\frac{17}{13}$
3. 다항함수 $f(x)$ 가 $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{3 h}=5$ 를 만족시킬 때, $f^{\prime}(2)$ 의 값은? [2점]
(1) 9
(2) 12
(3) 15
(4) 18
(5) 21
4. 함수 $y=f(x)$ 의 그래프가 다음과 같다. [3점]

$\lim _{x \rightarrow-1+} f(x)+\lim _{x \rightarrow 1-} f(x)$ 의 값은? [3점]
(1) -2
(2) -1
(3) 0
(4) 1
(5) 2
5. 등비수열 $\left\{a_{n}\right\}$ 에 대하여

$$
a_{2}=4, \frac{\left(a_{3}\right)^{2}}{a_{1} \times a_{7}}=2
$$

일 때, a_{4} 의 값은? [3점]
(1) $\frac{\sqrt{2}}{2}$
(2) 1
(3) $\sqrt{2}$
(4) 2
(5) $2 \sqrt{2}$
6. 함수 $f(x)=2 x^{3}-9 x^{2}+a x+b$ 는 $x=1$ 에서 극대이고 $x=b$ 에서 극소이다. $a+b$ 의 값은? (단, a, b 는 상수이다.) [3점]
(1) 12
(2) 14
(3) 16
(4) 18
(5) 20
7. 두 양수 $a, b(b \neq 1)$ 가 다음 조건을 만족시킬 때, $a^{2}+b^{2}$ 의 값은? [3점]
(가) $\left(\log _{2} a\right)\left(\log _{b} 3\right)=0$
(나) $\log _{2} a+\log _{b} 3=2$
(1) 3
(2) 4
(3) 5
(4) 6
(5) 7
8. 함수 $f(x)$ 가 모든 실수 x 에 대하여

$$
f(x)=x^{3}-4 x \int_{0}^{1}|f(t)| d t
$$

를 만족시킨다. $f(1)>0$ 일 때, $f(2)$ 의 값은? [3점]
(1) 6
(2) 7
(3) 8
(4) 9
(5) 10
10. 삼차함수 $f(x)$ 에 대하여 곡선 $y=f(x)$ 위의 점 $(0,0)$ 에서의 접선과 곡선 $y=x f(x)$ 위의 점 $(1,2)$ 에서의 접선이 일치할 때, $f^{\prime}(2)$ 의 값은? [4점]
(1) -18
(2) -17
(3) -16
(4) -15
(5) -14
9. 상수 $k(0<k<1)$ 에 대하여 $0 \leq x<2 \pi$ 일 때, 방정식 $\sin x=k$ 의 두 근을 $\alpha, \beta(\alpha<\beta)$ 라 하자. $\sin \frac{\beta-\alpha}{2}=\frac{5}{7}$ 일 때, k 의 값은? [4점]
(1) $\frac{2 \sqrt{6}}{7}$
(2) $\frac{\sqrt{26}}{7}$
(3) $\frac{2 \sqrt{7}}{7}$
(4) $\frac{\sqrt{30}}{7}$
(5) $\frac{4 \sqrt{2}}{7}$
11. 원점을 출발하여 수직선 위를 움직이는 점 P 의 시각 $t(t \geq 0)$ 에서의 속도는

$$
v(t)=|a t-b|-4 \quad(a>0, b>4)
$$

이다. 시각 $t=0$ 에서 점 $t=k$ 까지 점 P 가 움직인 거리를 $s(k)$, 시각 $t=0$ 에서 $t=k$ 까지 점 P 의 위치의 변화량을 $x(k)$ 라 할 때, 두 함수 $s(k), x(k)$ 가 다음 조건을 만족시킨다.
(가) $0 \leq k<3$ 이면 $s(k)-x(k)<8$ 이다.
(나) $k \geq 3$ 이면 $s(k)-x(k)=8$ 이다.
시간 $t=1$ 에서 $t=6$ 까지 점 P 의 위치의 변화량은?
(단, a, b 는 상수이다.) [4점]
(1) 14
(2) 16
(3) 18
(4) 20
(5) 22
12. 첫째항이 짝수인 수열 $\left\{a_{n}\right\}$ 은 모든 자연수 n 에 대하여

$$
a_{n+1}= \begin{cases}a_{n}+3 & \left(a_{n} \text { 이 홀수인 경우 }\right) \\ \frac{a_{n}}{2} & \left(a_{n} \text { 이 짝수인 경우 }\right)\end{cases}
$$

를 만족시킨다. $a_{5}=5$ 일 때, 수열 $\left\{a_{n}\right\}$ 의 첫째항이 될 수 있는 모든 수의 합은?
(1) 150
(2) 148
(3) 146
(4) 144
(5) 142
13. 사차함수 $f(x)$ 의 도함수 $f^{\prime}(x)$ 가

$$
f^{\prime}(x)=(x+1)\left(x^{2}+a x+b\right)
$$

이다. 함수 $y=f(x)$ 가 구간 $(-\infty, 0)$ 에서 감소하고 구간 $(2, \infty)$ 에서 증가하도록 하는 실수 a, b 의 순서쌍 (a, b) 에 대하여 $a^{2}+b^{2}$ 의 최댓값을 M, 최솟값을 m 이라 하자.
$M+m$ 의 값은?
(1) $\frac{9}{2}$
(2) 5
(3) $\frac{11}{2}$
(4) 6
(5) $\frac{13}{2}$
14. 두 곡선 $y=2^{x}$ 과 $y=-2 x^{2}+2$ 가 만나는 두 점을 $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ 라 하자. $x_{1}<x_{2}$ 일 때, <보기>에서 옳은 것만을 고른 것은?

$$
\begin{aligned}
& \text { ㄱ. } x_{2}>\frac{1}{2} \\
& \text { ㄴ. } y_{2}-y_{1}<x_{2}-x_{1} \\
& \text { ㄷ. } \frac{\sqrt{2}}{2}<y_{1} y_{2}<1
\end{aligned}
$$

(1) ᄀ
(2) ᄀ, ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
15. 삼차함수 $f(x)$ 가 다음 조건을 만족시킨다.
(가) $f(1)=f(3)=0$
(나) 집합 $\left\{x \mid x \geq 1\right.$ 이고 $\left.f^{\prime}(x)=0\right\}$ 의 원소의 개수는 1 이다.
상수 a 에 대하여 함수 $g(x)=|f(x) f(a-x)|$ 가 실수 전체의 집합에서 미분가능할 때, $\frac{g(4 a)}{f(0) \times f(4 a)}$ 의 값은? [4점]
(1) 101
(2) 102
(3) 103
(4) 104
(5) 105

단답형

16. $\log _{3} x=3$ 일 때, x 의 값을 구하시오. [3점]
17. 수열 $\left\{a_{n}\right\}$ 에 대하여

$$
\sum_{k=1}^{10} a_{k}=3, \sum_{k=1}^{10} a_{k}^{2}=7
$$

일 때, $\sum_{k=1}^{10}\left(2 a_{k}^{2}-a_{k}\right)$ 의 값을 구하시오. [3점]
18. 다항함수 $f(x)$ 에 대하여 함수 $g(x)$ 를

$$
g(x)=\left(x^{3}-2 x\right) f(x)
$$

라 하자. $f(2)=-3, f^{\prime}(2)=4$ 일 때, 곡선 $y=g(x)$ 위의 점 $(2, g(2))$ 에서의 접선의 y 절편을 구하시오. [3점]
19. 최고차항의 계수가 1 인 삼차함수 $f(x)$ 가 $f(0)=0$ 이고, 모든 실수 x 에 대하여 $f(1-x)=-f(1+x)$ 를 만족시킨다. 두 곡선 $y=f(x)$ 와 $y=-6 x^{2}$ 으로 둘러싸인 부분의 넓이를 S 라 할 때, $4 S$ 의 값을 구하시오. [3점]
20. $\angle \mathrm{BAC}=\theta\left(\frac{2}{3} \pi \leq \theta<\frac{3}{4} \pi\right)$ 인 삼각형 ABC 의 외접원의 중심을 O , 세 점 $\mathrm{B}, \mathrm{O}, \mathrm{C}$ 를 지나는 원의 중심을 O^{\prime} 이라 하자. 다음은 점 O^{\prime} 이 선분 AB 위에 있을 때, $\frac{\overline{\mathrm{BC}}}{\overline{\mathrm{AC}}}$ 의 값을 θ 에 대한 식으로 나타내는 과정이다.

삼각형 ABC 의 외접원의 반지름의 길이를 R 라 하면 사인법칙에 의하여

$$
\frac{\overline{\mathrm{BC}}}{\sin \theta}=2 R
$$

세 점 $\mathrm{B}, \mathrm{O}, \mathrm{C}$ 를 지나는 원의
반지름의 길이를 r 라 하자.
선분 $\mathrm{O}^{\prime} \mathrm{O}$ 는 선분 BC 를

수직이등분하므로 이 두 선분의 교점을 M 이라 하면 $\overline{\mathrm{O}^{\prime} \mathrm{M}}=r-\overline{\mathrm{OM}}=r-|R \cos \theta|$
직각삼각형 $\mathrm{O}^{\prime} \mathrm{BM}$ 에서 $R=($ 가 $) \times r$ 이므로

$$
\sin \left(\angle \mathrm{O}^{\prime} \mathrm{BM}\right)=(\text { 나 })
$$

따라서 삼각형 ABC 에서 사인법칙에 의하여

$$
\frac{\overline{\mathrm{BC}}}{\overline{\mathrm{AC}}}=\overline{\text { (다) }}
$$

위의 (가), (나), (다)에 알맞은 식을 각각 $f(\theta), g(\theta), h(\theta)$ 라 하자. $\cos \alpha=-\frac{3}{5}, \cos \beta=-\frac{\sqrt{10}}{5}$ 인 α, β 에 대하여 $f(\alpha)+g(\beta)+\left\{h\left(\frac{2}{3} \pi\right)\right\}^{2}=\frac{q}{p}$ 이다. $p+q$ 의 값을 구하시오.
(단, p 와 q 는 서로소인 자연수이다.) [4점]
21. 등차수열 $\left\{a_{n}\right\}$ 이 다음 조건을 만족시킨다
(가) $a_{6}+a_{7}=-\frac{1}{2}$
(나) $a_{l}+a_{m}=1$ 이 되도록 하는 두 자연수 $l, m(l<m)$ 의 모든 순서쌍 (l, m) 의 개수는 6 이다.

등차수열 $\left\{a_{n}\right\}$ 의 첫째항부터 제 14 항까지의 합을 S 라 할 때, $2 S$ 의 값을 구하시오. [4점]
22. 최고차항의 계수가 1 이고 $f(0)=\frac{1}{2}$ 인 삼차함수 $f(x)$ 에

대하여 함수 $g(x)$ 를

$$
g(x)= \begin{cases}f(x) & (x<-2) \\ f(x)+8 & (x \geq-2)\end{cases}
$$

라 하자. 방정식 $g(x)=f(-2)$ 의 실근이 2 뿐일 때, 함수 $f(x)$ 의 극댓값을 구하시오. [4점]

[^0]

5지선다형

23. $\lim _{n \rightarrow \infty} \frac{7 n^{2}+n}{n^{2}+5}$ 의 값은? [2점]
(1) 5
(2) 6
(3) 7
(4) 8
(5) 9
24. 매개변수 $t(t>0)$ 으로 나타내어진 함수
$x=t^{2}+\ln t, y=t^{3}+6 t$
에서 $t=1$ 일 때, $\frac{d y}{d x}$ 의 값은? [3점]
(1) 7
(2) 6
(3) 5
(4) 4
(5) 3
25. $\int_{3}^{6} \frac{2}{x^{2}-2 x}$ 의 값은? [3점]
(1) $\ln 2$
(2) $2 \ln 2$
(3) $3 \ln 2$
(4) $4 \ln 2$
(5) $5 \ln 2$
26. 두 등비수열 $\left\{a_{n}\right\},\left\{b_{n}\right\}$ 에 대하여 $a_{1}=b_{1}=1$ 이고

$$
\sum_{n=1}^{\infty} a_{n}=4, \sum_{n=1}^{\infty} b_{n}=2
$$

일 때, $\sum_{n=1}^{\infty} a_{n} b_{n}$ 의 값은? [3점]
(1) $\frac{7}{5}$
(2) $\frac{8}{5}$
(3) $\frac{9}{5}$
(4) 2
(5) $\frac{11}{5}$
27. $x=0$ 에서 $x=\ln 2$ 까지의 곡선 $y=\frac{1}{2} e^{2 x}+\frac{1}{2} e^{-2 x}$ 의 길이는? [3점]
(1) $\frac{1}{4}$
(2) $\frac{1}{2}$
(3) $\frac{3}{4}$
(4) 1
(5) $\frac{5}{4}$
28. 함수

$$
f(x)= \begin{cases}e^{x} & (0 \leq x<1) \\ e^{2-x} & (1 \leq x \leq 2)\end{cases}
$$

에 대하여 열린구간 $(0,2)$ 에서 정의된 함수

$$
g(x)=\int_{0}^{x}|f(x)-f(t)| d t
$$

의 극댓값과 극솟값의 차는 $a e+b \sqrt[3]{e^{2}}$ 이다. $(a b)^{2}$ 의 값을
구하시오. (단, a, b 는 유리수이다.) [4점]
(1) 33
(2) 34
(3) 35
(4) 36
(5) 37
29. 수열 $\left\{a_{n}\right\}$ 이 $a_{1}=1, a_{2}=4$ 이고 모든 자연수 n 에 대하여 $a_{n+2}-a_{n+1}=a_{n+1}-a_{n}$ 을 만족시킬 때,
$\lim _{x \rightarrow \infty} \frac{a_{n} a_{n+1}}{1+2+3+\cdots+n}$ 의 값을 구하시오. [4점]
30. $x=a$ 에서 극댓값을 갖는 사차함수 $f(x)$ 에 대하여 함수 $g(x)$ 가

$$
g(x)= \begin{cases}\frac{1-\cos \pi x}{f(x)} & (f(x) \neq 0) \\ \frac{7}{128} \pi^{2} & (f(x)=0)\end{cases}
$$

일 때, 함수 $g(x)$ 는 실수 전체의 집합에서 미분가능하고 다음 조건을 만족시킨다.
(가) $g^{\prime}(0) \times g^{\prime}(2 a) \neq 0$
(나) 함수 $g(x)$ 는 $x=a$ 에서 극값을 갖는다.
$g(1)=\frac{2}{7}$ 일 때, $g(-1)=\frac{q}{p}$ 이다. $p+q$ 의 값을 구하시오.
(단, p 와 q 는 서로소인 자연수이다.)

[^0]: * 확인 사항
 - 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
 - 이어서, 「선택과목(미적분)」문제가 제시되오니, 자신이 선택 한 과목인지 확인하시오.

