간단한 함수의 극한 질문
게시글 주소: https://i.orbi.kr/0001624105
억지로 끼워 맞추면 해설 할 수 있을 것 같은데 , 친척 동생 같은 사람에게 설명해 줄 순 없을 거 같네요.
누가 이거 시원하게 설명해주실 분 계신가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
게시글 주소: https://i.orbi.kr/0001624105
억지로 끼워 맞추면 해설 할 수 있을 것 같은데 , 친척 동생 같은 사람에게 설명해 줄 순 없을 거 같네요.
누가 이거 시원하게 설명해주실 분 계신가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
예.... 0분의 0꼴이면 반드시 수렴합니다. f(x)가 x를 0으로 보내면 0이 된다는 건 0으로 수렴한다는 의미 즉 f(x)가 'x'라는 인수(?) 를 포함하고 있다는 거잖아요... 그러니깐 x분의 f(x)에서 f(x)의 인수 x가 나눠지고 나면 결국 무슨값인진 모르지만 a로 수렴하게 되는거죠./... 여기서 설명하는게 한계가 있어서...이해되세요 ㅠㅠ?
객관식이든, 주관식이든
주어진 식이 '수렴'하니까 문제로 출제했겠지마는 정확한 증명 없이
그냥 가설적으로 추론하는 것도 위험한 발상입니다.
예.... 0분의 0꼴이면 반드시 수렴합니다. f(x)가 x를 0으로 보내면 0이 된다는 건 0으로 수렴한다는 의미, 즉 f(x)가 'x'라는 인수(?) 를 포함하고 있다는 거잖아요... 그러니깐 x분의 f(x)에서 f(x)의 인수 x가 나눠지고 나면 결국 무슨값인진 모르지만 a로 수렴하게 되는거죠./... 여기서 설명하는게 한계가 있어서...이해되세요 ㅠㅠ?
페르라나미 // 0분의 0 꼴이면 반드시 수렴한다니요, 그런 위험한 소리를 하시다니... -_- 이 문제가 특별하게 셋팅되어있어서 가능한 겁니다.
그러므로 일단은 그런 것이 가능하다고 가정하고 푸셔도 문제 없습니다. (혹은 다른 식으로 말하자면, 어차피 값을 구하는 문제이므로 일단 모든 것이 잘 되는 좋은 함수를 생각하고 푸셔도 상관 없다는 것입니다.)
물론, 이 문제의 경우 f(x) / x 가 1/3 으로 수렴함을 증명할 수 있습니다. 편의상
g(x) = x^2 + 2x
h(x) = f(x) - x
로 둡시다. 그러면 문제 조건에 의해 h(x)는 x→0 일때 0으로 수렴하며, {g(x) - h(x)} / {g(x) + h(x)} 가 2로 수렴합니다. 이제 {g(x) - h(x)} / {g(x) + h(x)} = j(x) 로 두면
h(x) = (1 - j(x)) g(x) / (j(x) + 1)
이고, 따라서
f(x) = x + (1 - j(x)) g(x) / (j(x) + 1)
= x + (1 - j(x)) (x^2 + 2x) / (j(x) + 1)
입니다. 이제 양 변을 x로 나누면
f(x) / x = 1 + (1 - j(x)) (x + 2) / (j(x) + 1)
이고, x→0 일때 j(x) → 2 이므로, 위 식은
1 + (1 - 2) 2 / (2 + 1) = 1/3
으로 수렴합니다. 따라서 f(x) / x 가 1/3 으로 수렴함이 증명됩니다.
아 답글 누르는 버튼이 컴퓨터가 구려서 안보여서 이것저것 누르다가 비추천 눌렀네요.
죄송합니다.
시원하게 이해가 된 것 같습니다. 감사합니다.
sos440 님의 놀라운 방법을 이용하는 것도 좋은 방법이기는 합니다만, 착안하기가 다소 어려울 수 있을 듯 보입니다.
( 3x + x^2 - f(x) ) / ( x + x^2 + f(x) ) 를 -1 + ( 4x + 2x^2 ) / ( x + x^2 + f(x) ) 으로 변형하여(분자에서 f(x)를 없애려는 의도) 풀이를 진행하면,
극한의 기본 성질만으로, f(x) / x 의 극한을 구할 수 있습니다.