[9.21] ★피니싱케치★
게시글 주소: https://i.orbi.kr/0003076409
며칠 전 ★피니싱케치★에 작성했던 이해원모의고사에 대한 제가 쓴 해설글이 블라인드 처리되어서 안보이네요 ㅠ
제가 이해원모의고사 해설도 제일 먼저 써서 올렸고(17번만 틀려서 17번 빼고 모든 문항을 올렸었음.)
이해원님이 댓글도 달아주셨는데 ㅠ 넘 슬픕니다ㅠ
그 해설글 다시 올려달라하시는 분들이 쪽지 많이 보내주셔서 다시 작성해서 올리려다가.. 지금 너무 피곤해서 그렇게 다 쓰지는 못하구요
제가 중요하다고 생각했던 두 문제만 써볼께요.
------------------------------------------------나의 해설---------------------------------------------------------------
18번
f(x)=(x^2-1)(ax^2-1/2-a)+1 은 문제에 주어진 조건으로 도출된다.
그리고 x=1,x=-1 때 이계도함수가 0이어야 한다. 이 부분이 핵심이었다.
그러면 이 사실을 준 식에 대입해서 a를 구하고 적분계산 하면 답이 76이 나온다.
참고로 f(0)의 값은 알 필요도 없고 f`(0)=0이라는 것은 문제를 풀면서 생각하는 도중에 알게되겠지만 별로 필요없다.
f(x)의 정확한 식은 f(x)=(x^2-1)(1/8x^2-5/8)+1 이 나옴이 자명하며 우함수이다.
이계도함수를 가진다는 것은 f``(0)=0 이다 뿐이지 곡선의 요철이 변하는 것이 아니다.
곡선의 요철의 변화는 f``(0)=0이 되는 지점 좌 우 에서 반드시 부호가 바뀌어야 한다.
20번
ㄱ. 그림 그려보면 바로 케치 가능하지만 엄밀하게 걍 미분 함 쳐줘서 좌미와 우미값을 구해 비교한다. 우미 2 나오고 좌미 1 나온다.
미분을 쳐줄 수 있는 근거는 준 식 자체가 다항함수이기 때문이다.
ㄷ. 식만 보고도 케치 가능하여 미분조사식을 돌릴 필요는 없지만 그래도 엄밀하게 하고싶다면 좌미 우미 미분조사식을 돌려
미분계수를 구한다. 좌미 우미 둘다 2가 나온다. 그래서 ㄷ에 제시된 식은 양의 실수 전체의 집합에서 미분가능하다.
ㄴ. 이 문제는 ㄴ이 관건이었다.
절대값이 보이므로 e를 기준으로 절대값 식을 벗겨주면.
y=-x+2e와 y=e^2/x 의 교점 존재여부와 y=x와 y=e^2*lnx/x 의 교점 여부를 조사해야한다.
전자의 교점은 한개가 나온다. 그 이유는 x=e에서 접하기 때문이다. x=e에서 둘 다 미분계수가 -1이다. 따라서 접함이 자명하다.
후자의 교점은 한개가 나온다. 그 이유는 y=e^2*lnx/x의 그래프가 위로 볼록하기 때문이다.<---이 부분이 이 문제의 완전 핵심이었던 것 같다.
이걸 엄밀하게 보이려면 반드시 이계도함수 까지 그려서 해당된 범위안에서 이계도함수의 부호가 (-)가 됨이 보여져야 한다.
그럼 이제 정말 구해볼까? 앗! 진짜 부호가 (-)가 나온다.
따라서 위로볼록한 그래프이며 y=x를 뚫고 지나가는 그림이 그려지므로 교점이 한개가 나옴이 자명하다.
끝.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 좀 하 ㅅㅂ!! 그냥 다음학기까진 하고 가야되나 아니야 그런다고 연인이 생길까..?
-
입시 끝나지도 않았는데 엄마가 재수에나 집중하라고 하는 거 어케 생각함? 하 그냥...
-
기숙사 춥네 8
3시간 넘게 난방 틀어놨는데 온도가 잘 안오르는거야
-
ㄹㅈㄷㄱㅁㅊㄷ
-
이젠 늘거서 못함뇨
-
저는
-
총학은 모든걸 알고있었으나 구성원들에게 이 사실을 정확히 알리지 않고, 이 사건을...
-
연애썰 6
-
어그로 죄송합니다 혹시 n수분들 작년에 텔그 가채점에서 보통 몇퍼 떨어졌나요?...
-
냄새 빼고 들어와 ㅇ미친것아.... 스카 혼자 쓰나
-
언 정석민 미 김범준 영 안 들음 생 한종철 지 이훈식 1~10까지 커뮤픽 정도를...
-
뻥임뇨
-
모교 연애썰 9
여고에 그런 게 있겠냐? 난 있을 줄 알았는데 역시나 없더라
-
구라고 OMR 이거 인식 되냐냐 이거보다는 화이트 제대로 칠해진거 같은데
-
아 연애하고싶다 3
그냥 학교 동방에서 보이는 사람들한테 죄다 고백해볼까 수시원서 넣듯이 6명한테만
-
수학 65점 싷모 보면 88-92였는데 그냥 죽을까 작년보다 못봤어요
-
일세카도 거의 오토오토만 돌린거임
-
덕코 주시오 2
주세요
-
거짓말을 안해도되는게 너무 편함뇨..
-
서울대 수리과학부 목표이고 언매 91 미적 100 영어 80 물2 44 화2...
-
춘식쌤 조교하고 싶은데… 재수도 해야겠고…
-
2024 모의논술인데 범위도 안잡고 0에 가?까?운??? 저거 모의아니고...
-
확통 기하 노베긴 해요 내신때는 했는데
-
ㅇㄸ요?? 라이브로 들어야할 거 같은데 ㄱㅊ나여
-
성탄절 계획 4
-
공통 4점짜리 대부분 못풀고 미적은 2년전에 한 번 해봄 내년엔 대학 꼭 가고...
-
스펙 봐주셈뇨 7
143 30 18 모솔 떡두꺼비처럼 생김 인생 어캄뇨
-
운동이 좋네 2
1시간 빡세게 하고 오니까 운동에 모든 집중력을 쏟을 수 있어서 딴 생각을 안하게...
-
성대 다군 탐구 1개 빼면 비벼볼만 한 거 같은데 올해 터질거 같다는 말도 들리고 해서 ..
-
수능까지망해서 진짜죽고싶음뇨
-
강사만 너무 믿지마셈.. 지금은 찍먹해도 괜찮음 제발 ㅜㅜ 여러명 듣고...
-
(기?만) 이거 갈 수 있어요? 이거 진짜에요? 이거 갈 수 있어요? 이거 갈 수...
-
지금 계속 들낙하니 스트레스만 쌓여서... 그냥 무시하구 살려구요
-
보통 얼마임?
-
이미 여자친구가 있는걸><
-
기균도 쓸 수 있긴 한데 그냥 일반 전형으로는 어디 가나요? 기균도 알려주면 땡쿠욤..
-
러닝타임 ㅈㄴ길어
-
머리속을떠나지않아 그만봐야겠음...
-
ㅇ.ㅈ 7
해보고싶었어
-
딥피드수준...진짜
-
사용앱 인증임요 0
네이트로 오르비 함요
-
확인의 과정입니다 알아두세요
-
네
-
컴으로 구글에 박광일 대성 치면 스폰서로 대성마이맥에 ‘개정 수능 국어 이미 준비...
-
아이디 jskim3078 입력해주새요!!
-
1컷 96인건 알고있는데
-
똘똘이좌 글씨체 반응이 좋아 오늘 쓴 글씨체 올려드립니다. 0
최근에는 좀 많이 순화되었습니다. 저 글씨체는 1년 전이구요, :) 이 글씨체는...
오 !
예~
사!
유리?
18번 어떻게 푸셨어용 !?
저는 , 20 ,21 은 해설지하고 똑같이 풀었공 ,
18번은 h(X) 이계도함수 존재이므로 미분가능 ,
그러면 , h'(x) limx->1+ : -1 ,, h'(x) limx ->-1- : 1 이렇게 나오고 , f ' (x) 도 limx -> 1 - = -1 , limx -> -1+ = 1 & f(x) 는 4차함수 ,
따라서 [-1,1]에서 f(x) 개형을 대략적으로 2가지 추측가능한데 , 위로볼록 , 그리고 m 모양
위로 볼록 일경우 (이차함수모양) 도함수가 일차함수인데 , 이경우 도함수에서 미분 불가이므로 이계도함수 조건에 모순 , 따라서 f(x)개형은 m 모양
그리고 , h ' (x) 의 두 점 (-1,1) (1,-1) 을 볼 때 , f ' (x) 가 삼차함수인데 , f ''(x) limx->-1+ = 0 , limx->1- = 0 을 만족해야므로
f ' (x) 는 (-1,1 ) , (1,-1) 을 극점으로 갖는 삼차함수가 되고 이리이리해서 답을 구했는디 과정이 맞는지 모르것어용 ..
나랑 완전 똑같음 ㅋㅋㅋㅋ ㅋㅋㅋㅋㅋ ㅋ ㅋㅋㅋㅋ ㅋㅋㅋㅋ ㅋㅋㅋㅋ ㅋㅋㅋㅋ ㅋ ㅋㅋ ㅋ ㅋ ㅋ
good , ㅋㅋㅋ
good ^o^
으아닝~~수학고수님 ysESP님이랑 풀이가 똑같았다니 ㅋㅋㅋ
나 지금 넘 기분 좋아서 졸렸던거 지금 없어졌어용~~~ㅠ ㅋㅋ
우앙..나 실력 마니 늘었나보당ㅋㅋㅋㅋ
OTL ... 저 수학 몬해요 .. ㅠㅠ 모평 6 , 9 둘다 말림 ..ㅠㅠ
저번에 완전 어려운 수학문제 막 다 푸시고 레잘하시던데요~~~*.*
포스가 탱구쌤 급으로 느껴졌었쑴..+.+
문제를 풀게 될 때 대략적으로가 아니라 엄밀하게 딱!!! 두가지 모양만 가능한데!!
그 것이 바로 단순하게 U 거꾸로 해논 모양 ,그리고 m모양 이렇게 두 가지만 후보군이 나와요.
그래서 자연스럽게 시험지에 두가지를 점선으로 그려주고 문제를 시작했어요!
첫째! U를 거꾸로 해놓은 모양일 경우---> 이계도함수가 안나옴. 문제 조건에 위배.
둘째! m 모양일 경우---> 이계도함수가 나온다. 문제 조건에 만족.
여기서 첫째 것을 버리고 둘째 것을 취한다.
저는 이 문제 풀면서
이해원님이 두개의 후보군이 나오는데...
여기 두개 후보군 중에서 하나를 꼭 버려야 한다는 것을 케치할 수 있니??
이렇게 물어보는게 출제자의 의도가 아닌가 생각되었어용~~
굳좝~
생귤~ ^^
올 ㅋ
앗 ㅋㅋ 탱구쌤~~ 저 풀이 괜찮나요? ㅋㅋㅋ ㅋㅋ
네 잘푸럿어요 ㅋ 근데 ㄴ 보기 저렇게 나누지말고 그래프의 관점으로 풀면 더 간단햇을거 가타요 ㅋㅋ
ㅋㅋ넹넹~ 그렇게 연구해볼께요쌤~ㅋㅋㅋ ^^