수리...질문ㅠ
게시글 주소: https://i.orbi.kr/0003146865
x에 대한 방정식 x^2lnx=mx+a 의 실근이 모든 실수 m에 대하여 항상 1개만 존재하도록 하는 a의 최솟값은?
좀 풀어주세요ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내 범고래가!!
-
저는 한 달 뒤 1월 1일이 되면 옯갇님이 돌아오실 거라고 믿어요 6
그러합니다...
-
저는 남붕이같나요? 33
남붕이처럼보일려고 노력많이했었는데
-
사실저도여붕이임 5
네
-
심연이다...
-
저도 사실... 2
https://orbi.kr/00070189292/여기-합격-뱃지-달고-있는-옯비언-...
-
메인 처음가봄 2
신기하군
-
언매 92(공통-8) 1가능성 잇을까요..? 원래 메가 빼고 대성 진학 ebs 부산...
-
숙대 맛집 추천 0
중식당 여기 한번 가봐라 존나맛있다
-
패딩입었는데도 덜덜 떨림
-
저번에 몇화까지봤는지 기억이안남
-
방송 on
-
수능 수학 범위 내에서 불호가 가장 높은 과목은 수1일 수밖에 없는 듯 수2,...
-
??
-
딸 수 있음?
-
겨울 느낌 노래 8
좋아요
-
망해가는 수능판에서 수능 커뮤인 오르비를 살릴 수 있을까? 망령분들 말 들어보면...
-
부산대의대 근황 0
어차피 혈액종양은 돈도 안되고 하는데만 하는 분야라서 말이지 오죽하면 몇몇의대는...
-
얘가 오늘 생일이에여 그래서 생일 축하문자 보낼려고 했는데 얘가 200일 된 남친이...
-
채수빈이 진짜 10
남자들한테 호불호 잘 안갈리는 미녀아닌가
-
이전 글 : https://orbi.kr/00070005760 위 링크로 가시면...
-
근데 컵 들고 마실 때 새끼손가락 이거 왜 이러는 거임 12
이러는 사람 되게 많더라
-
2등급은 나오겠지......? 나 대학 가야되요 시발
-
아 저격마렵다 6
킼
-
영어4면 어디써야하지..
-
김밥천국에서 돈까스먹고있는데, 입구에서 되게 젊었을때 존예였을꺼같은 30대유부녀랑...
-
귤 맛있다 4
귤이 맛있다면 귤은 비싸다
-
저 고백할거 있어요 11
저사실오르비언분들 다사랑해요
-
기자회견 민지 8
곱다 고와
-
진짜 불안해서 그런데 생명 원점수 37이고 표점60입니다(메가기준) 3가능성...
-
어차피 복전 무한으로 즐길 수 있으니까 인문 자전이 나중에 문과밖에 못 골라도...
-
올해는 이런 말까지 나올 정도의 처참한 컷이 나오지 않았으면 좋겠네요 현역때...
-
ㅇㅈ2트 0
캬 이게색스지
-
화작 컷 96인거 보고 생각고쳐먹음 라기엔 언매93도 2일거같은 느낌인데
-
ㄹㅇ................
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 1
논리싫증주의자는 관심이 없다
-
ㅇㅈ 4
캬
-
확통 등급; 6
공통1틀 96점 2등급이 나올수있는게 사실인가요..?
-
그냥 연경제 가겠단 마인드로 설경 지균 스나하는건 너무 도박인가 서울대 지균...
-
처음배울때 뭐가 더 어렵나요?
-
전자 vs 전기 9
이거도 부탁할게요
-
생윤) 허수가 4개 틀린 과정+재수 시 유지가 맞는 선택인가 0
발단) 10모 1뜨고 안심해서 사문 위주로 함 전개) 힘빠졌는지...
-
진지하게 96가면 23급 억까임 ㄹㅇ
-
음
-
십덕의 오노추 1
내청코 3기 op 싹틈의 꽃
-
전기 vs 기계 8
님들이라면 어디가나요?
-
수학도 조지고 믿을건 국어였는데 대학가지 말라고 하늘이 억까하노 진짜
-
오수까지는 군의관인지 공보의된다고 알고 있었는데, 올해 들어보니까 내년에 거의...
-
졸라 배부름
f(x) = x^2 ln x
g(x) = mx+a ( (0,a)를 지나고 기울기 m인 직선)
가 모든 기울기m에 대해 항상 한 점에서만 만나도록 해야겠네요. ( x > 0인 범위에서 )
f ' , f '' 계산해서 f 의 개형 그려보세요. 직접 해보시면, f ' = 2x ln x + x , f '' = 2 ln x + 3
x= 1/루트e 보다 작은 곳에서는 감소, 큰 곳에서는 증가,
x = 1/루트(e^3) 에서 변곡점.
(0,a)를 지나는 직선을 기울기m을 연속적으로 변화시키면서 쭉 긋다보면 위 함수랑 두 점에서 만날 수도 있게 될텐데, 그런 일이 안 벌어지려면, 변곡점에서의 접선의 y절편보다 a가 크거나 같으면 된다는 것을 알 수 있을 거에요.
변곡점에서의 접선은 y = -2/루트(e^3)(x-1/루트(e^3))-3/(2e^3 ) 의 상수항은, 1/(2e^3) 이므로 이 값이 a의 최솟값.
혹은 ( x^2 ln x - a ) / x= m 니까 (x>0이니까 x로 양변 나눠도 무방)
이 식이 모든 m에 대해서 한 개의 실근(x>0)을 가지려면, 좌변의 함수가 단조증가 혹은 단조감소만 해야한다고 해서 풀어도 똑같은 결과를 얻어요. (단조감소는 불가능하므로 결국 단조증가를 해야할거에요)