09수리가 14번 질문이요~
게시글 주소: https://i.orbi.kr/0003150886
전 이거 점 (4,0)에서 직선 l에 수선의 발을 내린 후
각 (P1 O P2)의 tan값을 구하고
처음 c1의 반지름의 길이는 점과 직선사이의 거리관계에 의해 구해졌으니까
두번째 c2의 반지름의 길이만 구하면 끝난다고 생각해서
여기서 점 p2를 지나고 x축에 수직인 직선이 직선 l과 만나는 점이 원의 중심이라고
대충 감으로 찍어서 tan관계에 의해 c2 반지름 길이를 구해서 답을 구했었는데요.
이거 이렇게 풀면 그냥 감으로 푼거죠??
09수리가가 무게감 있는 문제들이 엄청 많네요 ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저는 남붕이같나요? 33
남붕이처럼보일려고 노력많이했었는데
-
사실저도여붕이임 5
네
-
심연이다...
-
저도 사실... 2
https://orbi.kr/00070189292/여기-합격-뱃지-달고-있는-옯비언-...
-
메인 처음가봄 2
신기하군
-
언매 92(공통-8) 1가능성 잇을까요..? 원래 메가 빼고 대성 진학 ebs 부산...
-
숙대 맛집 추천 0
중식당 여기 한번 가봐라 존나맛있다
-
패딩입었는데도 덜덜 떨림
-
저번에 몇화까지봤는지 기억이안남
-
방송 on
-
수능 수학 범위 내에서 불호가 가장 높은 과목은 수1일 수밖에 없는 듯 수2,...
-
??
-
딸 수 있음?
-
겨울 느낌 노래 8
좋아요
-
망해가는 수능판에서 수능 커뮤인 오르비를 살릴 수 있을까? 망령분들 말 들어보면...
-
부산대의대 근황 0
어차피 혈액종양은 돈도 안되고 하는데만 하는 분야라서 말이지 오죽하면 몇몇의대는...
-
얘가 오늘 생일이에여 그래서 생일 축하문자 보낼려고 했는데 얘가 200일 된 남친이...
-
채수빈이 진짜 10
남자들한테 호불호 잘 안갈리는 미녀아닌가
-
이전 글 : https://orbi.kr/00070005760 위 링크로 가시면...
-
근데 컵 들고 마실 때 새끼손가락 이거 왜 이러는 거임 12
이러는 사람 되게 많더라
-
2등급은 나오겠지......? 나 대학 가야되요 시발
-
아 저격마렵다 6
킼
-
영어4면 어디써야하지..
-
김밥천국에서 돈까스먹고있는데, 입구에서 되게 젊었을때 존예였을꺼같은 30대유부녀랑...
-
귤 맛있다 4
귤이 맛있다면 귤은 비싸다
-
저 고백할거 있어요 11
저사실오르비언분들 다사랑해요
-
기자회견 민지 8
곱다 고와
-
진짜 불안해서 그런데 생명 원점수 37이고 표점60입니다(메가기준) 3가능성...
-
어차피 복전 무한으로 즐길 수 있으니까 인문 자전이 나중에 문과밖에 못 골라도...
-
올해는 이런 말까지 나올 정도의 처참한 컷이 나오지 않았으면 좋겠네요 현역때...
-
ㅇㅈ2트 0
캬 이게색스지
-
화작 컷 96인거 보고 생각고쳐먹음 라기엔 언매93도 2일거같은 느낌인데
-
ㄹㅇ................
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 1
논리싫증주의자는 관심이 없다
-
ㅇㅈ 4
캬
-
확통 등급; 6
공통1틀 96점 2등급이 나올수있는게 사실인가요..?
-
그냥 연경제 가겠단 마인드로 설경 지균 스나하는건 너무 도박인가 서울대 지균...
-
처음배울때 뭐가 더 어렵나요?
-
전자 vs 전기 9
이거도 부탁할게요
-
생윤) 허수가 4개 틀린 과정+재수 시 유지가 맞는 선택인가 0
발단) 10모 1뜨고 안심해서 사문 위주로 함 전개) 힘빠졌는지...
-
진지하게 96가면 23급 억까임 ㄹㅇ
-
음
-
십덕의 오노추 1
내청코 3기 op 싹틈의 꽃
-
전기 vs 기계 8
님들이라면 어디가나요?
-
수학도 조지고 믿을건 국어였는데 대학가지 말라고 하늘이 억까하노 진짜
-
오수까지는 군의관인지 공보의된다고 알고 있었는데, 올해 들어보니까 내년에 거의...
-
졸라 배부름
-
라인 부탁드려요 0
언미물지 백분위 81 94 2 93 89 이거 어디까지되나요
-
// StudyRecordDTO 설정...
맞게 잘 하신 것 같아요. 감이 아니라, 접하는 게 사실이니까..ㅎ 아래처럼 닮음으로 풀어도 될 거 같아요.
각 원의 중심을 O_1 , O_2 , O_3 , ...이라고 하면
삼각형 OO_1 P_1 이랑 OO_2 P_2 가 닮음이니까 (그 이후로도 OO_n P_n 모두 다 닮음이요)
4:1 = (루트15 - r) :r --> r = (루트15) / 5
넓이비는 3/5. pi/(1- 3/5) = 5pi/2. 맞나요?
아 원에 접하는 직선의 접점에서
수선을 그으면(법선?)
그 직선은 원의 중심을 지난다는 그 사실을 쓰면 되는건가요??
넵ㅎ
근데 이 개념은 공도벡터에서도
많이 쓰이지 않나요?
걍 원을 구로 확장시켜서요.
직선도 평면으로...
네 어찌보면 정말 간단하지만 중요한 무기인 거 같다는 생각이..
네 맞는거 같네요~
이거 걍 첫째항이랑 셋째항보고 베어버려도 되요~ ㅋㅋ
이런 류 치고 기출 중에 젤 고퀄인거 같음..
아 이해했어요.
그렇게도 풀이가 가능하네요. ㅋㅋ
원밖의 한점에서 원에 그은 두접선의 두 점접까지의 거리가 같다는걸 이용해서 푸는 문제인듯해요 이번 예평때도 tan3세타 였나 응용된 문제 있었죠
이 문제 ㄷㄷ 했죠
아 기억나요.
예평에서 그 문제랑 바로 연달아 뒤문제가
접선과 각도를 활용하는 비슷한 유형이었던거...
이문제 첨보믄 당황할거 같네요 ㅠ