무브
오르비
아톰
내 태그 설정
다큐 [386689] · MS 2018 · 쪽지
게시글 주소: https://i.orbi.kr/0003202519
처음 만들어 보는데 묻는 논리에 문제는 없는지 궁금하네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쪽지 보내기
알림
스크랩
신고
풀어보니까 상당히 좋은 문제군요^^ h는 연속함수가 아니므로, lim h(g(n)) = h (lim g(n)) 와 같이 바꿀 수는 없으나, 일단 lim g(n) 를 계산해봅시다. (이 글에서 모든 극한은 n->무한대) g(n) = \sum_{k=1}^{n} {f(1+ k/n ) - f(1+ (k-1)/n)} (2k-1)/2n = sum_{k=1}^{n} a (2+ (2k-1)/n ) ((2k-1)/2n) (1/n) = 적분(0~1까지) a(2+2x)x dx = 5a/3 근데, a>0일 때 위 시그마 안의 a (2+ (2k-1)/n ) ((2k-1)/2n) (1/n) 를 보면, a(1+x)x 를 구간 [(k-1)/n , k/n] 에서 적분한 값보다 작으므로, (이유: (2k-1)/2n 은 구간의 중점이고, 함수 ax(1+x)는 아래로 볼록이므로, x=(2k-1)/2n 인 점에서 그은 접선과 x축, x= (k-1)/n , x=k/n 등으로 이루어진 사다리꼴보다 적분값이 더 큼.) lim h(g(n)) = h (lim g(n)) = h ( 5a / 3 ) = [ 5a / 3 ] (단, 5a/3이 정수가 아닐 때) 이거나 = 5a/3 -1 (단, 5a/3이 정수일 때) a<0일 때는 함수가 위로 볼록이므로 비슷하게 하면 된다. 5a/3이 정수일 때 그냥 5a/3이 된다. a=-3 , -2 , -1 , 1, 2,3일 때 각각 -5, -4, -2, 1 , 3 , 4 이므로 다 더하면 -3.
원래 의도는 역함수의 적분이었는데 f(1+k/n)...... 을 풀어서 이해할 수도 있었네요. 정답이에요.
보니까 딱 역함수 적분꼴이군요.
2026 수능D - 352
.
🌟바닥부터 정상까지🌟
정치와법 수능 2년 연속 만점자+시대인재 컨텐츠 검토팀 근무
수학전문과외 친절한예진쌤입니다!
국영수과외
과학 과외
풀어보니까 상당히 좋은 문제군요^^
h는 연속함수가 아니므로, lim h(g(n)) = h (lim g(n)) 와 같이 바꿀 수는 없으나, 일단 lim g(n) 를 계산해봅시다. (이 글에서 모든 극한은 n->무한대)
g(n) = \sum_{k=1}^{n} {f(1+ k/n ) - f(1+ (k-1)/n)} (2k-1)/2n = sum_{k=1}^{n} a (2+ (2k-1)/n ) ((2k-1)/2n) (1/n)
= 적분(0~1까지) a(2+2x)x dx = 5a/3
근데, a>0일 때 위 시그마 안의 a (2+ (2k-1)/n ) ((2k-1)/2n) (1/n) 를 보면, a(1+x)x 를 구간 [(k-1)/n , k/n] 에서 적분한 값보다 작으므로, (이유: (2k-1)/2n 은 구간의 중점이고, 함수 ax(1+x)는 아래로 볼록이므로, x=(2k-1)/2n 인 점에서 그은 접선과 x축, x= (k-1)/n , x=k/n 등으로 이루어진 사다리꼴보다 적분값이 더 큼.)
lim h(g(n)) = h (lim g(n)) = h ( 5a / 3 ) = [ 5a / 3 ] (단, 5a/3이 정수가 아닐 때)
이거나 = 5a/3 -1 (단, 5a/3이 정수일 때)
a<0일 때는 함수가 위로 볼록이므로 비슷하게 하면 된다. 5a/3이 정수일 때 그냥 5a/3이 된다.
a=-3 , -2 , -1 , 1, 2,3일 때 각각 -5, -4, -2, 1 , 3 , 4 이므로 다 더하면 -3.
원래 의도는 역함수의 적분이었는데 f(1+k/n)...... 을 풀어서 이해할 수도 있었네요. 정답이에요.
보니까 딱 역함수 적분꼴이군요.