자작문제
게시글 주소: https://i.orbi.kr/0003232910
아쉽게도 제가 답을 적어놓은 종이를 잃어버려서...풀이를 구합니다^^;
형식은 수능문제지만 수능에 나올 만한 문제는 아닙니다.(한 문제에 너무 많은 걸 물어보므로)
고등학교때 경우의 수 구하는 문제가 있었는데 그걸 약간 일반화시켜 수열화해서 만들었던 걸로 기억합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
13.1 쓰고있었네.. 지금 15.1.1까지 나왔구만..
-
ㅅㅂ 11-15라인이 7분컷이 말이 되냐
-
흑흑...
-
늘 늦어도 자정까진 잠들려 노력하는 편인데 이 양반들이 자정부터 화력이 세지니 원...
-
대충 월에 100쓰는거 같은데 취미 빼면 60후반까지 줄겠네,,,
-
오후.
-
자러감요 2
-
세 병은 너무 힘들어..
-
그렇게 고를바에 걍 재밌어보이는거 고르는게 나은듯
-
ㅇㅂㄱ 2
-
9시로 작전변경.
-
이미 수1 수2 둘 다 사서.. step0 step1 푸는데 며칠 정도 걸릴까오
-
국가에서 지원해주는데 컷도 맞히겠어~?~?~?~?~?
-
에공 에고공
-
작년에는 있던 강의에 붙이는거라 개강이 빨랐던거고 올해는 새로 찍어서 느린거임?
-
요즘은자제하게되는듯
-
분명 수능끝나고 2
다신 쳐다보지도 않는다했는데...어째서 가슴이 자꾸....뛰는것이지..?
-
https://m.blog.naver.com/kcmjungmin36/223679284...
-
폭빵 없애줬으면 좋겠음... 대체 뭔의미일까? 나도 안될 거 아는 대학 99...
-
1년 박아서 중대에서 서성한은 너무 아쉬운데 연고 진짜 제발..
-
바램 12일차 1
무언가를 간절히 바라면 그게 이루어진대요 지구 2컷 37 12일차
-
ㅡㅡ
-
ㅈㄱㄴ 칸타타 여대 3컷 미적 2컷 재수 경찰대 유빈 한완기 수학 화학
-
안녕하세요 이번에 재수 결심한 06인데요,이번 수능 화작 86점입니다 독서론 1개,...
-
수능수학난이도투표 10
23수능 14152230 vs 24수능2228 이라고 생각해서 23이 압도적이라고...
-
다들 쑥쑥 잘 올리던데....올해 공부하면서 수능은 재능이구나를 심하게 느껴버림...
-
일주일에서 이주 안되게 방치했는데 향수가 안에서 터졌는지 더플백이랑 니트, 공항잠바...
-
언미생지 59 92 3 45 38 대학만 봄 반영비 가산점 다 고려해서 ㄱㄱ잘아시는분만
-
순수 궁금
-
수능공부하면서 좀 과감해진듯 뭐든지 생각하고 저지르는 게 아니라 일단 저지르고 생각하려고 함
-
실모에 부은 돈이 얼만데~ 히카도 다 풀었는데~ 준킬러까지 골고루 다 틀렸어~...
-
수학은 조금 기다린 뒤에
-
오르비가 잘 안돼도 좋습니다 어쩌구저쩌구
-
모두행복하세요 9
해피해피
-
진짜 열심히 하는 애들이 특정 성적 이상으로 안 나오는 케이스가 은근 많음...
-
맞팔 해줄사람 있나.?...
-
여자친구 컴백
-
시코쿠는 국제면허 따고 갔다와야지...기차 시간표 박살나서 자차 없으면 개빡셀듯
-
1. 자신의 성적에 유리한 반영비, 변표의 대학을 찾아 지원을 한다. ( 혹은 과를...
-
작년 실제 표본 기준 최초합에 점수 상위 20퍼대인데 올해기준 낭낭하게 불합격임
-
삼반수는 못할 것 같다 원래 진짜 안 이랬는데 요새 안 좋은 생각 들고 꿈에서...
-
일 끝나고 집 돌아왔을 때 반겨줄 사람이 없다 생각해봐라 였는데 생각해보니 진짜 비참할거 같았음
-
닭집 분발해라 밀리면 안되지
-
나아님 퍼옴 0
ㅇㅇ
-
쫑느 미적 현강 생각중인데 겨울동안 공통 어떻게 공부할까? 공통 뉴런은 올해 힌번함
-
어느게 제일 어렵나요? (미적 기준)
-
그냥 머리 위로 한 번 넘겼는데 저렇게 빠짐 ㅋㅋ
-
중2 0
시험 딱 2주남았는데 과목 7개중에서 2개만 끝냄 ㅋㅋ 망한건가
-
답 실채랑 같았음?
포함과 배제의 원리에서 a_n = 3^n - 2^n - 2^n - 2^n +1^n +1^n +1^n = 3^n - 3* 2^n +3
b_n = 3*2^n-1 (첫자리는 3가지, 그 다음자리부터는 항상 2가지 가능성)
c_n = b_n - 6 = 3*2^n-1 -6 (단, n>=2일때) (b_n에 해당하는 것들 중, 맨 앞 두 수(예를 들어 1,2라고 합시다)가 1 2 1 2 1 2 ... 이런 식으로 반복되는 유형만 제거하면 되는데, 맨 앞 두 수가 결정되는 방법의 수는 6가지이므로)
d_n 은 대충 생각해도 맨 마지막 자리가 1,2,3 중 약 1/3씩 분배될 것이라 알 수 있으므로(맨 앞자리도), d_n /c_n 의 극한은 1/3이 맞을 것입니다. 하지만 직접 d_n을 계산해봅시다. c_n 중에서 맨 앞자리=맨 뒷자리 인 것의 개수를 e_n 이라 하면,
1.. c_n = d_n +e_n (이 식은 필요는 없지만..)
2.. d_n+1 = d_n +2e_n
3.. e_n+1 = d_n
입니다. 2,3번 연립 -> d_n+1 =d_n +2d_n-1. 풀면(특성근 등등) d_n = u* 2^n + v*(-1)^n (u,v는 상수)
d_2 =0 , d_3 =6 을 이용하여 u,v를 계산하면, u=1/2 , v=-2. 따라서 d_n = 2^n-1 +2(-1)^n-1. 따라서 극한은 1/3.
풀이를 적은 종이를 잃어버려서.. 라는 멘트는 누구의 멘트와 비슷한데..ㅎㅎ
와우! 정말 잘 푸시네요. 이 문제는 사실 d_n을 구하는게 핵심인데, 이렇게도 풀 수 있겠끔 보기를 저렇게 만들었던 것 같습니다. 그래도 a_n~c_n은 굉장히 쉽게 구하셨네요ㅎ 라고 쓰는 중에 dn까지 구하셨네요! 대단하십니다ㅎ