한완수 수2상편 질문드립니다
게시글 주소: https://i.orbi.kr/0003349739
헤비사이드로 항이4개곱해진건 어떻게해야하나요
한완수 수2상편 각각 28쪽2번 34쪽입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시발
-
같이 긁었는데 여드름이 시원하게 긁혀오면 기분째짐
-
좇목질이 대인관계의 끝이라고생각 모든 친목질은 좇목질인데 상대가 그걸 수용할수있는지...
-
전 실물파임 6
사진으론 못 담음 그래서 ㅇㅈ을 못하는 거임 그런 거임 ㅇㅇ
-
꽈배기먹고싶다 2
설탕에굴려서
-
내가 생각하던 거랑 거의 똑같이 가나다군 잡아주네... 다군은 좀 달랐지만 당연히...
-
두시됏으니잠 16
빠빠뇨
-
근데 팔로우분들 5
인증 왜하시지 원래 하시던 분들이 아니었던거같은데
-
예나 6
잘자..
-
학종 열심히 챙기고 선택과목 물화생. 전체 내신 1.7정도 나오는데 저번 중간고사...
-
흔들어라 흔들어라
-
ㅇㅈ 8
재밌긴했음
-
수능끝났고 하고싶었음
-
빨리 내 옯스타 디엠으로 인증한 사진 보내놔라. 이상.
-
ㅇㅈ 2
-
ㅇ....ㅈ 10
이사진 5조 5억년만에 꺼내는느낌
-
너무 많이 한듯? ㅇㅈ?
-
이게머노
-
아니 왜 나만 5
은따당하고 잇엇뇨
-
ㅇㅈ 6
처음으로 봤는데 존잘이라서 기분 좋네여
-
걍 죽을게
-
왼쪽눈 충혈됨
-
네
-
1시 54분이다 빨리 이불덮고 들어가자라 나는 좀 더 있을게
-
잔다 4
-
감상적이게 되네 좀
-
ㅇㅈ 23
다섯번째 재탕이지만 그냥 보십쇼……….
-
시간의흐름이
-
이러면 여자드리 조아하겠지
-
잔다 4
피곤해
-
오랜만에 뻘글 ㅈㄴ 썼네
-
중독성있음
-
ㅇㅈ 8
이거저임..
-
근데 왜 화나지? 진정한 나의 성적 취향을 알아버린건가
-
아 다놓침 0
걍자러감 ㅂㅂ
-
이투스랑 안한다매
-
광속에 가까운 속도로 운동하는 고정된 좌표계에서 바라보는 상대적인 길이가...
-
10년동안 들음
-
퇴물됐네,,
-
아 1600년대 수능에 나왔으면 킬런데...
-
난 여자인데 9
왜 잘생겼다하는데
-
나를 허락해줄 대학이란 손쉽게 입학하는 편하고도 감미로운 공간이 아냐
-
과거의 아픈기억을. 돌아보는 느낌이라 지켜주고싶음
-
ㅇㅈ 11
오조오억년동언 똑같은인증만하는중
-
나를 허락해준 세상이란
-
ㅇㅈ 5
전에했던건데 근데진짜사진이없음 이런거밖에..
-
정보) 그래 그리 쉽지는 않겠지는 극장판에만 나온다 2
어드벤처 본편에 나오는 노래는 찾아라 비밀의 열쇠(오프닝)이랑 파워 업 등이 있는데...
-
먹고싶다
1. 1 / (n(n+1)(n+2)(n+3)) = (1/3) {n+3 - 3} / (n(n+1)(n+2)(n+3)) = (1/3) { 1/(n(n+1)(n+2)) - 1/((n+1)(n+2)(n+3))} 이므로, 더하면 첫항 (1/3) (1/(1*2*3)) = 1/18 만 남고 다 상쇄. (뒷쪽 항들의 극한은 0으로 가므로 논리적 모순 없음.)
헤비사이드로 하려면 1/(n(n+1)(n+2)(n+3)) = a/n + b/(n+1) + c/(n+2) + d/(n+3) 이 n에 대한 항등식이라 두고 상수a,b,c,d구하시면 됩니다. (a,b,c,d각각 1/6 , -1/2, 1/2, -1/6)
쭉 다 더하면 1/4 , 1/5 , ... 등등은 쫙 다 상쇄되고, 1 , 1/2 , 1/3 에 적당한 계수(a,b,c,d 등) 곱한 것들만 몇 개 남아서 더해보면 됩니다.
2. 1/ (x(x+1)^3 ) = a/x + b/(x+1) + c/(x+1)^2 + d/(x+1)^3 이 x에 대한 항등식이라 두고 상수a,b,c,d,구하시면 됩니다. (양변에 x(x+1)^3 곱하고 전개..)
(a,b,c,d 구하시는 약간 더 간단할 수도(?) 있는 방식은 1/(x(x+1)^3 ) = 1/(x(x+1)^2 ) - 1/(x+1)^3 으로 분해하시고 이 중 앞 항은 다시 1/(x(x+1)^2 ) = 1/(x(x+1)) - 1/((x+1)^2 ) = 1/x - 1/(x+1) - 1/(x(x+1)^2 ) 처럼 하는 겁니다. 그러면 답은 1/x - 1/(x+1) - 1/(x+1)^2 - 1/(x+1)^3 . )
ㄴ. 이 문제는 참이 아닙니다. (동치 아님.) 편의상 알파=a, 베타=b라 둡시다.
좌 <=> 우 에서, 좌 <= 우 방향 증명은 자명. (양변에 (x-a)^2010 |x-b| 곱하면 되는데 이는 0이상인 수이므로..)
좌 => 우 방향은,
x=a,b가 아닐 때, (x-a)^2010 |x-b| (양수)로 양변 나누면 원하는 부등식 (x-a) f(x) >= 0 얻음.
x=a일 때, 좌측 우측 부등식 모두 0=0 으로 참이므로 성립.
x=b일 때, 좌측 부등식 0=0으로 성립하나, 우측 부등식은 (b-a)f(b) >=0 로 f(b)의 부호에 따라 참, 거짓 모두 가능.
주. 만약 f가 연속함수라는 조건이 있으면 참.