-
아가기상 1
ㅇㅇ
-
김동욱 0
현강생인데 일주일에 기출1회면 너무적지않나요?
-
정보) 서울대는 작년에 무려 '4시간' 조기발표를 했다 1
조발 기대하지마세요....
-
성균관대 합격생을 위한 노크선배 꿀팁 [성대25][셰어하우스 추천] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
얼버기 2
얼리 버러지 기상
-
왔다리 갔다리 하시면서 반수 해보신 분 있으신가요??
-
재수 학원.. 0
어디로 가야 할까요 학습관리 같은 케어 있었으면 좋겠는데 추천 좀 해주세요 선생님들.........
-
여기 핵빵 이러길래 아 중앙쓸걸 하고있었는데 조발한거 보니까 아닌것같기도 하고..
-
시발 당연한거 아님? 돈 못벌면 의사 왜 함?
-
하늘에 떠도는 하얀 우리 추억 모아 잠든 그대 꿈 속에 아무도 몰래 비가 되어 내릴래요
-
ssh가 뭐게요 4
ㅋㅋ
-
27 되기까지 0
0.02%
-
분명 난 온클듣고 쳐자던 고2고 수능은 0203들 일이었는데 1
어찌하여... 난 이제 삼수생으로 입학하는가
-
이틀 뒤에 설치면접인데 이거 늦잠이슈로 못갈수도 있겠네
-
여캐일러 투척 1
화2 정복 5일차
-
ㅇㅇ
-
오늘 점심메뉴 ㅁㅌㅊ? 12
벌써부터 출근이 설렌다
-
생윤 vs 지리 3
이번에 2개 다 사탐런 하려고 하고 하나는 사문 할 생각입니다 나머지 하나는 생윤...
-
서울대뽕 이런거 빼고(전 노는거좋아해서 연대를 서울대보다 선호합니다..) 치과의사의...
-
애초에 표점 얘기는 왜 꺼내는지 모르겠네 당해마다 난이도에 따라 결정되는 거고...
-
행시 1차 4
자료해석 + 상황판단은 열심히 공부했단 가정 하에 몇점 정도 나옴? 본인 시간 재고...
-
접수자수 < 응시자수 이건 카르텔 아입니꺼!!!
-
뉴런에 수분감 들을건데 마플이나 마더텅 같은 시중문제집도 병행해야하나요? 그리고...
-
붙을 가능성 높나요? 행정학과
-
막상 군대 가보면 사람들 학력수준이 생각보다 많이 낮다는데요 ㅋㅋ 육군은 그냥...
-
얼버기 15
갓생 4일차 오늘은 여행가요
-
더럽게졸리네 0
한번이라도 푹잤다간 지각이고 빡쌔다 빡싹
-
근데 사탐런 3
24처럼 과탐 불 사탐 물로나와서 분리변표 쓰면 멸망 아님? 그런 리스크들 다...
-
ㅈㄴ 어렵게 나와서 표점 떡상 혹은 딴 과탐이 물로 나와 표전 떡락 (표점 기준) 흐흐
-
전 처음에 불호였다가 뭔가 재밌을 것 같고 아래에서 생활하다가 복층에서 자면 꽤...
-
원래 자랑하려고 인스타 사용하는 거 아닌가? 돈자랑 차자랑 등 온갖 자랑은 다...
-
오늘은 진짜 억까라 더 혈압 오름 경기내용도 내용이지만
-
.
-
쪽잠자기 성공 오늘도 파이팅!!
-
얼버기 1
-
목에서 뚝이 아니라 우직 소리가 났는데 하루종일 목을 잘 못 돌리고 계속 아픔 왼쪽...
-
마라훠궈는 잘 먹는데 토마토탕은 안먹어봐서요
-
6시 얼버기 3
ㅇㅈ메타 있었음?
-
롤하는 모 교수 모교 교수로 이번에 반수런
-
ㅇㅂㄱ 3
오늘도 6시기상
-
그냥 편의상 음슴체로 쓰겠음. 본인은 사탐런헤서 25수능에서 쌍윤 선택해 생윤...
-
토할거같은데 나중에 배 안고파지려면 먹어야되는데 아침은 왜이렇게 속이 더부룩할까
-
심판 개새끼야
-
ㅠ
-
재작년에 기출 한번 했는데 다시해야할것같아서요 마더텅 하려니 문제수도 많아서요 낮은...
-
보는중 6
진격거
-
먹긴 먹었는데 머리털 다 빠지것음 탈모 아님.
이런문제는어디서얻나요?
수리나 문제집춫현좀
제가 공부하면서 문제 많이 풀고,
그걸 바탕으로 생각나는데로 만든거에여 ㅋㅋ
수리나 문제집은 자이스토리 추천 ㅋㅋ
a_4 (2) = 8 이고 a_5 (3) = 6 이어서 합하면 14인가요?
아랫문제는 5번이요!
ABA + A = E --> A(BA+E)=E 이므로 A의 역행렬 존재. (따라서 두번째 식 A^2 B^2 = A --> AB^2 = E 이므로 B의 역행렬 존재하는 것도 알 수 있고요.) (BA+E)A=E --> 원래식과 비교하여 ABA=BA^2 --> AB=BA 이므로 ㄱ 참.
ㄴ은 (ㄱ에 의해) AB^2 =E와 동치이므로 참.
B가 역행렬 존재하므로 ㄷ은 AB^2 = B^3 -B 와 동치. 이는 다시 B^3 - B = E 와 동치. 이 식은, 원식2개 A^2 B +A=E , AB^2 =E 에서 유도가능하므로 참. (A 소거하면 되는데, 첫식 양변에 B^3 곱해서 A^2 B^4 + AB^3 = B^3 --> E + B = B^3)
물어보시진 않았지만 껌은 자이리톨 추천 ㅎㅎ
네ㅋㅋㅋ 둘다 맞아요!
항상 열심히 풀어주셔서 감사해요 ㅎㅎ
역행렬이 존재한다는것의 의미는 여기서 뭔가요?? 정의를 사용할수있다는건가요?
그리고 A- 같은 기호는 풀때는 필요가 없는건가요?
정사각행렬X에 대해 XY=E인 정사각행렬Y가 존재하면, 말 그대로 'X의 역행렬이 존재한다' 라고 합니다. 이 때 Y를 X의 역행렬이라 하고요.
위에서 A(BA+E)=E 이면 BA+E가 A의 역행렬이 되는 것이고, A의 역행렬이 존재한다고 말할 수 있습니다. AB^2 =E 이면, (AB)B=E 이니까, AB가 B의 역행렬이 되는 것이고 B의 역행렬도 존재한다 말할 수 있고요. (혹은 AB^2 = E에서 A의 역행렬이 B^2 이 되는 것이라고 이야기할 수도 있습니다.)
또한 B의 역행렬이 존재하면, C=D 와 CB=DB가 완전히 동치입니다. C-D=O <==> (C-D)B=O 이기 떄문이지요. (좌 ==> 우 는 당연하고, 우 ==> 좌는 B의 역행렬을 우측에 곱함으로써 바로 얻을 수 있으니 동치입니다.) 이 사실을 ㄷ에서 사용했습니다^^
앜ㅋㅋ1번세로길이8인데 계속 2*3생각하면서 왜틀렸지하고있었네욬ㅋㅋ