대치동어둠의양적관계어드밴스드유리함수점근선궁극의얼티메이트해석법
게시글 주소: https://i.orbi.kr/00036710382
이번 글은 편하게 반말로 함.
제목을 보면 알 수 있듯이 이 스킬 비슷한 무언가는 쓸 일이 어지간하면 없음.
지금까지 쓴 칼럼들은 어려워도 쓸 일이 꽤 있었는데 이번엔 쓸 일이 없는거 같음
쓸 일도 없는 스킬을 왜 칼럼으로 쓰느냐? 심심한데 기분이 좋아서 그럼
다음부턴 쓸모있는 칼럼을 올리겠음ㅎ;
(추가 : 아니 이거 어쩌다보니 메인왔는데 혹해서 남용하지 마세요 취급위험.. 어지간하면 불리하고 사설문제에 가끔 유리한느낌)
일단 이 방법은 내가 처음 생각한 풀이는 아니고, 모 머리좋은 고2학생이 알려준 풀이임. 걔 좀 천재같음. 아니 천재맞음 ㅇㅇ. 아무튼 이 방법은 상황에 따라 풀이가 매우 단축되지만, 상황에 따라선 풀이가 매우 늘어짐.
혹시 머리가 아주아주아주 비상한 몇몇 학생들은(ex : 이 풀이 알려준 학생) 써먹을 수 있겠지만 일단 나는 못써먹을듯(쓰지 말란말). 시작합시다.
화1에서 유리함수가 어케 쓰이는지 모른다면, 참고용으로 이전 칼럼을 보고 오면 좋을듯
아 근데 사실 아직 유리함수 잘 안쓰면 이 칼럼이 쓸데가 없나?
걍 아직 유리함수 모르면 좋아요만 누르고 가줘ㅁㄴㅇㄹ
이 문제에서 몰수 비를 그래프로 그리면 아래와 같음
근데 알다시피 유리함수는 점근선을 가짐. 지금 넣어준 B의 몰수가 m/a면 점근선인건 아는데, x축 점근선을 모름. 그 높이를 대충 k라고 잡자.
근데 이 k가 뭘 의미하는지 미리 생각해보면, B를 음의개수로 무한히 투입했을 때 생성물/반응물이잖음. 그리고 한계 반응물은 계속 B임
그러면 C의 개수는 음수로 달리고, A의 개수는 양수로 계속 달릴거임. 이때 C/A는 k이고, 2/a가 될 거라는걸 알 수 있음. 이해 안될테니 식으로 써서 보여주면
ㅇㅈ? 계수 비가 될거임.
암튼 나머지 설명은 밑에 그림으로 대체함. 투입한 B의 양이 2일때 분수 값이 4니깐..
즉 점근선의 교점에서 유리함수 점을 찍었을 때, 넓이가 같다는걸 이용해서 식을 세우는게 이 풀이의 핵심임
1) 점근선의 의미를 생각해서 점근선의 값을 구하고
2) 넓이를 통해 식을 세운다.
근데 보다시피 식이 훨씬 더러움. 심지어 투입한 B의 양이 3일때는 유리함수 적용도 못하고, 반응식 깡계산 해야함. 뭐 이런..
그래도 마지막 마무리엔 유용할수도 있음. 이렇게. 참고로 이 문제에서 m=9 a=4
사실 이렇게 보면 이게뭐냐..싶을텐데 사실 아래 두 문제 예시로 더 풀건데 이건 또 매우 잘먹힘.
왜 안좋은 상황만 보여줬느냐? 혹시 혹해서 유리함수 문제마다 이 풀이 쓰려고 할까봐. 눈에 팍 들어오는 직관적인 상황에선 가끔 유리한데, 대부분의 상황에선 불리하니깐 안쓰는게 좋음.
그래도 아주 쓸 일은 없는거 아닌게, 평소에 유리함수를 자주 그려서 푸는 편이고 계산 직관이 뛰어나고 수학을 잘하는 학생이라면 이거 써도 될듯. 근데 그러면 이미 20분컷 만점일텐데.. 뭐 살아남기 모의고사 25분컷 50점을 위해선 유용할수도 있음 ㅁㄹ
암튼 다음 문제를 한번 이걸 응용해서 풀어보자
풀이 1
풀이 2
솔직히 이 경우엔 꽤 쓸모있는 것 같음. 이렇게 넓이를 구하기 편하고 그림이 유리함수로 미리 주어진 상황에선 생각보다 꽤 쓸모있음.
혹시 이 스킬을 쓸 생각이 있는 학생이 있다면, 앞선 문제처럼 유리함수 점근선이 오른쪽에 있으면 쓰지 말고, 이 상황 처럼 유리함수 점근선이 왼쪽에 있는 상황은 꽤 쓸만한것 같으니 이 때 써보면 좋을듯.
마지막 예제
풀이(귀찮으니 부피=몰수로 두고 풀음)
이 문제도 되게 유용함. 마지막 마무리에서 일차함수 기울기를 이용했는데, 투입한 B의몰수/C의몰수를 평행이동 하고 미분하는 느낌. 이거 말고도 다른 사설문제들에 적용 해 봤는데 꽤 풀리는 경우 많음. 유리함수 그래프가 이미 그려져있거나 그리기 쉽고, 왼쪽에 점근선 있으면 해볼만한 것 같음. 더 확장 가능성이 있어보이기도 하고..
핵심은
1)점근선의 의미 상상 및 값 추론(물질의 개수가 음수가 되는것을 허용하고 무한으로 극한을 보내기, 한계반응물은 고정)
2)유리함수 넓이 이용/유리함수 식 이용
이거 두개. 혹시라도 쓸 생각이 있다면 충분히 많은 연습을 하고 쓰는걸 권장하고 이 풀이로만 문제를 풀고 정석풀이를 연습 안한다면 수능 당일날 위험할 수 있으니 정석 풀이도 꼭 연습해보길 바람.
끝
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
매수실시
-
그만싸워 5
-
제 친구가 한양대 다니는데 학교에서 과외 연결 해줬다는데 한양대는 원래 그런가요?...
-
손 시렵지만 15
오르비를 멈출수 없는나
-
이짓거릴안한다면 더 빠르게 읽을수있을거같은데 예전부터 이래왔어서 뇌빼고 나무위키나...
-
언매미적영어물리지구 100 96 1 48 42 인설의 가능한 점수인가?
-
이재용
-
상위 직종비율은 이과 65 : 문과 35다 그랬으면 좋겠네요 ㅋㅋ
-
저번에 개같이 쳐맞고 아직도 정신을 못차렸나.하긴 못차렸으니까 탈퇴도 안하고...
-
나도 질받 8
-
놀라운 사실: 10
어제 산 바나나킥 다 못먹음 좀따 방 다 치우고 먹어야지
-
아...
-
13번인가 그 f(x) g(x) 다항함수고 마지막에 정적분 0부터 1/2 구하는거...
-
안됨뇨
-
03인데 의대 갈 가치가 없다고 보시는 분들도 많은 거 같네요.. 졸업할때까지...
-
질문받아드립니다 13
ㄱㄱ
-
왜?? 왜?????
-
강원지역의 한 육군 부대에서 훈련 중 다친 일병이 끝내 사망했다. 26일 군 당국에...
-
내가 제설작업해야 하거든
-
뭐 첫눈? 2
눈 왜 벌써와
-
눈오는데? 10
진눈깨비에 가깝긴 하지만
-
써도 도움이 많이 될진 모르겠네 일단 열심히 써볼게요
-
뭔 ㅋㅋㅋ 17
서울대-로스쿨 테크가 의사보다 상방높다고 티나는 바이럴을 하고 앉았네 그렇게 치면...
-
박카스 젤리 맛있다 13
오...
-
누구보다도 최우제 쉴드 개열심히 치던사람인거 오르비에서 모르는사람 없음 다들...
-
이룬거도 겁나 많은 성골유스 + 열광하기 좋은 플레이스타일 깔끔하지 못 한 마무리로...
-
문과 라인 봐주세요.. 11
이거 서성한 되겠죠….? 중대 논술 안갔는데….ㅜ 연고 하위과 상향 지원도 가능한가요….?
-
ㅈㄱㄴ?
-
건대 공대나 교차지원으로 중경외시 문과중에 가능한 곳 있을까요..?
-
옆사람 성적 볼 때 더 멘탈 나갈듯
-
공부할땐 n제 후기가 정말 필요했는데
-
난 쓰레기야 8
고미
-
이거 뭐 다음날 훈련이 있어서 좀 총기손질이나 이런걸로 제한하는거 제외하고 간부들이...
-
내가 제일 인지도가 높나 얼마전까지만 해도 월붕이 진화노예 예나오리 등등이었는데
-
2022년, S 모 고등학교(자사고, 안 가는 걸 추천)에 다니고 있던...
-
인공지능대학원 + 아웃풋 우수한 학사, 석사, 박사 과정 및 커리큘럼 교수진,...
-
공통틀이 유리한거임? 본인 미적1틀 공통 2틀임
-
솔직히 현역 정시는 수시보다 높게 가면 성공아님? 10
그렇다고 해주시면 안될까요..
-
1차 세탁 시도 -> 민심 그대로 -> 패선생님 당황 -> 2차 세탁 본인이...
-
조금만 더 0
메인은 갔다가 블라당하고 싶어요
-
의사 망할일은없음 ㅋㅋ 12
증원된다고해도 뭐 예전만못하다정도지 여전히 고소득자일거고 일반회사원만큼 떨어질일은...
-
질받 31
-
연애 두려운점 4
내가 한번 정을 준 사람한테서 정을 진짜 더럽게 못 떼서 ㄹㅇ 간이고 쓸개고 다...
-
질받 18
-
스울대 가고싶다 8
스울대 아니면 도저히 만족을 못하겠다
-
수능끝나고 4
할거 없는데 추천좀.. 게임은 안 좋아해요
-
대체 왜 이딴 시스템을고집하는거임? 여론조작이 하루이틀도 아니고 심하네 참
-
나두 무물보 24
-
지금 몇점 이하 안 나오면 실패한다 몇점 이상부터만 할 수 있는 일이다 이거 하려면...
ㅁㅊ
음의 반응이라...
어떻게보면 화2를 끌어온건가
그런 느낌도 있고 화1을 뇌절의뇌절을쳐서 수리적으로 해석한 느낌
사실 이렇게 보는게 맞는듯
흠 좀더 찾아보고 올게요
아니 화1 머치동 강사들도 이런 스킬은 안 쓸듯...ㄷㄷ
wow..
저거 알려주신분 수학 고정100일듯;;
와 이건 진짜 신기하네 ㅋㅋ
생각지도못했다 ㅋㅋ
정신적으로 충격 받음 저게 뭐꼬
이. 이게 머노
누구는 1문제 푸는데 30분 걸리는데...
wow
밑에 예제 둘 다 깡계산으로 풀었는데 이게 능지차인가
당연히 저도 처음볼땐 깡계산..
화1에서 기울기도 땡큐한 건데 유리함수라... 대단하네요
뭔소린지는 모르겠지만 개추
한줄요약 : 그냥 생지해라.
안써도됨....
죄송합니다.. 생지러에게는 너무 어려워요..
물1 사세요...다항함수밖에 안 나오는 물1 사세요....
어림도없지 전기력 실계산문제!!
여러분 쉬운 물2하세요
이해는 못했지만 신기하니 좋아요 박고 갑니다
요즘에는 화학 문제 풀 때 '유리함수' + '점근선'까지 끌어와야 하는건가요?
어후... 타임어택이 예전보다 훨씬 심하겠네요.
아뇨 심심해서 쓴 글이고 이렇게까지 할 필요는 전혀 없어요
사실이런 풀이를 만들만큼 어렵게내는 과탐이 이상한거
오빠 제목이 너무 깐지나요
기출은 씹으면 씹을수록 새로운 맛이 나네요..