이거 아무도 못풀죠?
게시글 주소: https://i.orbi.kr/0004518855
ㅋㅋㅋㅋㅋ자연스레읽힘 ㅋㅋ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
존재하는것은 원인을 가진다.. 진성난수는 존재한다 진성난수는 원인을 가진다 원인을...
-
기도티콘 2
기도내용 인생안망하기 밥먹고살기 가족정상적부양 은혜갚기 인생ㅅㅂ 어떻게든 되겟지...
-
스나가 절반이나 될린 없고
-
제곧내
-
앵그리버드 인형사진
-
수험때도 이랬는데 지금도 이럴줄이야
-
전화기, 바이오 쪽으로 물1,2, 화1,2 공부 어느정도 필요? 0
ㅈㄱㄴ 1학년 이후에 전화기나 바이오 쪽으로 전과/복전 생각 중인데 물화 1 2...
-
얼마나있을진모르겠지만 빈둥거리는 할거없는 존잘분들은 수능끝나면 여고앞에서 붕어빵이나...
-
출처 - 불펌
-
태지님 어캐 됐을까 10
이번에 성불하실거 같던데
-
접수 전에 미인증표본들한테나 시키지 ㅋㅋㅋㅋㅋㅋ 진짜 웃기네 앱만 쓰는데 하루에 한벜씩 시키네 ㅋㅋ
-
생2 유기 0
굿
-
내친챙길걸 0
내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신챙길걸내신...
-
참고로 대학 미적분학 (벡칼 전까지는) 적분 기법과 급수가 고비입니다 0
적분 기법은 계산이 토나올 정도로 많아서 (사실 내용은 치환, 부분, 부분분수...
-
인생망했네 7
배고파
-
인설의 걸고 반수하신건 아는데 결국 가셨나요?
-
안녕하세요 22
아찐 튀긴미쿠에요
-
잠적함?
-
어 일단 룰러 선수가 LPL 갔다오더니 더 잘해진 느낌을 받았던것 같고요 그리고...
-
많이 해롭나봐요......... 단약할 날은 영원히 안올듯 곧 아버지 은퇴하시면...
-
대학 다닐 때도 생각해 보면... 또래 여학우들은 "카레돈까스 먹고 싶당 ㅎ" 이런...
-
대학로 놀기 좋음? 서울대생들도 많음?
-
프사 어떰? 0
ㅋㅋ
-
올해 새터가면 11
05좀 많앗으면좋겠당
-
성대 다음으로 빨리 나오는 대학들 어딘가요? 그리고 빨리 나온다면 언제쯤 나오나요?...
-
제1원인 vs 무한원인 뭐가 답일까요
-
요즘 드는 생각이 12
커서 뭐해먹고살지밖에 없음 막막하다 그냥
-
아씨뭐지 사기당하고있는거야 내가맞는거야
-
삼수말림 1
점공추이보니까 6칸 최초합쓴거말고는 암것도못붙을거같아서...
-
중소기업가면 되죠...
-
세상사람들이 행복한거,잘풀린거임 ㅡ아?
-
우주 최강 과탐러, 이곳에 잠들다. 24.05.01~25.01.09
-
11월14일에뒤진다고
-
3바퀴 넘게 돌아야하는데 힘들겠죠?
-
듣는사람이안보이네
-
그러나 왕호 개같이 프레이형한테 듀오 신청하자 티모 흑화해서 적팀으로 만나서 패주겠다 선언
-
거의다있는거같은데
-
다녓음 요즘 주변에 애들보면 재수때메 고민 많길래 궁금한거잇으면 물어보세열
-
강민철 독서 1
너무 체화가 어렵고 안맞는 느낌인데 독서만 김승리 듣는거 어케생각하시나요
-
???:아니 나 이번 수눙 물리 48점인데 컷 48 이게 말이 되냐?? ???:아니...
-
여사친 3
반수 시작하기 전에 고백공격 하고싶다 진짜 귀여운데 왜 친구가 될수밖에 없었을까ㅠ
-
스펙: 지능: 3수 비명문대 문과 경제: 취업불가(학벌 and 개인핸디캡)+ 빈민촌...
-
제발 저분 붙었으면 ㅠㅠ
-
키가 7등급인데 깔창을 신을까요?
-
37명 뽑고 추합3명쯤 돌것같아요….. 121명 지원해씀 너무 불안해서 요즘 잠을못자요….
-
너무 오랫동안 안봐서 스토리도 다까먹엇고 아니 뭣보다그너무유치한거같음 흐으음
-
고백하고 차이기라도 하지 투디캐좋아하면 답이없음
-
목동 시대인재 갈 예정인데 반 어디쯤으로 배정될까여.. 국95수93영2생81지96...
-
해도 되나요? 평가원/교육청 올1임.. 백분위 97부터 100까지 다양하게 받아봄...
강대에서 어제 배운거 ㅋㅋ
극한값 분배하는 건 항이 유한할 때만 성립하니까(?)
라고 어디선가 본거같은데...
이게 맞는듯 ㅇㅇ
먼가 3번째줄에서 4번째줄 가는 게 틀린 거 같은데 ...
설명은 못하겠다
비슷한걸 교과서에서 봤는데
정작 해설을 안달아놓음 ㅁㅊ
생각해보라고 하고 답은 안알랴줌 나쁜놈들
원래 교과서에 ~알려져 있다. 이런 식 서술은
니들 수준으로는 이것에 대한 증명은 꿈도 꾸지마!
라고 읽으면 된다고 한 모 수학강사가 말씀하신..ㅋㅋ
엔분에 엔을 엔분의 일로 엔개로 나누고 극한을 보내면 무한대분에 1이 n개 밖에 없는건데
엔분에 엔을 극한보내면 무한대분에 1이 무한개 있는거잖아요 따라서 저렇게 분할해서 극한보내면 안됨
뭐라는거야 설명을 못하겠네 ㅠㅠ
첫번째줄 맞나요? n/n은 상수분의 상수로 나타낸것이지 n이 변수가 아니잖아요....그러면 그 n을 무한대로 보낸다는건 n을 변수로 인정해버린다는 뜻이 되는데요?
즉 n/n 과 lim( n/n)의 값이 같은 건 우연의 일치일 뿐 동치시켜서 풀면 안될꺼 같아요!
우와;;; ㅋㅋㅋ
이거 설명좀 해주시지 ㅠ
님이 설명한게 맞습니다 ㅎ 유한개까지만 성립되요
오홍~
같은 내용 포만한에 질문했떠니 난만한느님이 답변해주시길,
lim(an+bn)= lim(an) + lim(bn)
이라는 성질은 an, bn이 수렴하면 성립한다고 배웠는데,
이것의 따름정리로 증명할 수 있는 한계는 an bn cn ... 이 유한개일때이구요.
그 개수가 무한개일때에는 함부로 극한의 성질을 적용할수도없고, 교과서에서도 배운적 없고, 증명하지도 못합니다. 틀린명제니까요
즉, 항이 무한개일 때
lim(an+bn+cn ...) = liman + limbn + limcn + ............
이런건 없습니다.
라고 하십니다.