[Haru의 칼럼 1] 수학 기출 문제 분석이란?
게시글 주소: https://i.orbi.kr/0004705812
칼럼 1탄 _ 기출문제분석이란.pdf
안녕하세요.
긴 수험생활 끝에 고려대학교 신소재공학부 13학번에 재학 중인 Haru입니다.
아래의
칼럼은 제가 수험생활동안 겪은 시행착오를 통해 얻은 저만의 노하우이며 개인적인 의견이기에 다른 점이 있을 수도 있으나 한명의 학생이라도 이 글을
보고 저와 같은 시행착오를 겪지 않게 하기 위해 쓴 것입니다.
M학원
D학원 EBS 모든 선생님들. 지나가는 고등학생, 학교 선생님, 옆에 있는 내 짝꿍, 심지어 부모님까지도 매일 하시는 말씀. “기출 봐라. 기출
분석해라. 기출이 짱이다”
그러면
대부분의 수험생들이 반문한다.
“그게
뭔데요? 어떻게 하는 건데요? 그냥 풀면 되나요?”
“저는
기출을 3번이나 반복해 풀어보았습니다. 이제 저는 기출 분석이 다 된 것이군요.“ 라고들 한다.
기출을
풀어야하는 이유는 뭘까?
‘미○로’라는
책의 겉표지에는 이런 말이 써져있다. ‘하늘 아래 새로운 것은 없다. 溫故而知新’
교수님들이
수능 시험을 출제하러 들어가실 때 그들에게 기출문제집은 반드시 손에 쥐어드린다.
평가원
모의고사를 출제해 보신 분의 말씀을 들어보니 실제로 출제위원들은 이것을 바탕으로 문제를 출제하신다고 한다.
일종의
출제
manual
같은 것이다.
물론
수능 출제 manual이 따로 존재하긴 한다. 그것이 이론적인 manual이라고 한다면 기출 문제집은 실전 manual이다. 따라서 수험생들은
기출 문제를 절대 무시해서는 안 된다.
더욱이나
이 문제들은 시중의 어떤 문제보다도 질이 좋다. 수많은 검증을 거칠 뿐만 아니라 하나의 오류라도 찾아내기 위해 수많은 분들이 고생을 하신다.
그만큼
문제의 질은 올라가고 이는 수험생들에게 크게 도움이 된다. 따라서 기출 문제의 중요성은 부인할 수가 없다.
이렇게
중요하다는 기출
문제를 그럼 어떻게 분석하고 학습해야 하는 것인가.
물론
방법은 여러 가지가 있다.
하지만
필자는 필자의 방법이 옳다고 생각하기에 이렇게 소개한다.
분석은
평소의 문제처럼 한 번 풀고 버리는 것이 아니라 그 문제를 씹어 먹고! 뜯어 먹고! 구워삶아! 우리 몸에 완벽하게 흡수! 해야 한다.
하나의
기출 문제가 놓여있다. 일단 문제를 읽기 시작한다.
문제에서는
많은 조건들이
제시될 것이다. 많으면 4,5개 적으면 2,3개로 문제를 풀도록 설계되어있다.
그
조건 하나 하나를 그냥 놓쳐서는 안 될 것이다.
가령
f(x)의 성질이 나오는데 그보다 우선 f(x)가 다항함수라고 주어져 있다.
그렇다면
우리는 그런가보다 하고 넘어갈 것이 아니고 다항함수의 성질과 전에 풀었던 문제들에서 다항함수를 이용하는 풀이법을 떠올려야 한다.
「
다항함수는 일단 실수 전 구간에서 연속이고 미분가능하다.
2번째로
다항함수의 식은 ax^n+bx^n-1·····z로 표현할 수 있다. 문제에 제시 되어있는 조건을 활용하여 최고차항의 계수 a를 구하고 차수 n을
계산할 수 있는 문제를 풀어봤을 것이다.
또는
한 때 유행했던 문제처럼 3,4차 함수의 개형을 모두 그려서 조건에 부합하지 않은 graph는 지워나가는 방식으로 문제를 풀 수도 있다.
전자의
풀이는 함수의 식을 이용하여 대수적으로 풀어낸 것이고 후자는 graph를 이용하여 기하학적으로 문제를 해결한 것이다. 」
위와
같이 ‘다항함수 f(x)’ 라는 조그만 단어로도 많은 것을 생각해 낼 수 있다.
이는
물론 개념적인
내용이
될 수도 있고 문제를
통해 습득한 다양한 skill(편법을
말한 것이 아닙니다.)일 수도 있다.
어찌
됐든 문제를 읽을 때 이런 조건들에 ①②③ 표시를 하여 하나 하나 뜯어 보는 습관이 필요하다.
처음에는
힘들겠지만 이것이 숙달이 되면 굳이 표시하지 않아도 머릿속에서 자연스럽게 떠올리고 있는 자신을 발견할 것이다.
두
번째는 함정
파악이다.
Case
by case. 사람들마다 함정이라고 생각하는 부분이 다를 수도 있지만 보편적으로 범위가 설정되어있는 문제에서 '최댓값 최솟값을 구하라' 라는
문제 혹은 '옳은 것을 고르라', '옳지 않은 것을 고르라'는 유형도 모두 함정이 될 수 있다. 또는 길이를 구하라 이면 음수 값은 제외 시켜야
할 것이다.
모두
catch 해 내야 한다.
세
번째는 구하라라고
하는 값을 보는 것이다.
평가원은 쓸 때 없는 계산을 시키지 않는다.
다시
말해 tanθ를 구하라고 할 때에는 각각의 길이를 구해서 높이/밑변을 구하거나 cosθ를 구하고 이를 통해 tanθ를 구하게 안 한다. 제대로
풀었다면 애초에 tanθ값이 바로 나오게 될 것이다.
위의
과정을 다 거쳤다면 궁극적으로 해야 할 일을 해야 한다. 출제자의
의도를 파악하는
것이다.
‘아,
이 교수님은 이 개념을 사용해서 예전에 이런 문제를 본 뒤에 그 때 조건을 조금 더 숨겨서 이와 같은 문제를 만드셨구나’ 를
알아야 한다.
그리고
마지막으로 위의
조건들을 하나로 묶는 고리를
찾아내어 내가 접근할 방향을 3,4개. 적어도 2개는 설정한다.
그리고
위의 조건을 바탕으로 하나씩 지워가면서 궁극의 한 가지 방법만 찾아낸다.
이
과정이 바로 출제자의 의도를 파악하는 단계이다.
이런
식으로 문제를 푼다면 1번 만에도 기출은 분석이 된 것이다.
다음에
이와 비슷한 문제가 출제되어도 학생은 이미 연습이 되어있을 것이다.
하나의
문제를 분석하는 방법을 알아보았다.
그
다음은 옵션이긴 하고 주로 선생님들이 해주시지만 학생이 직접 해보는 것도 의미가 있다.
5년동안의
6평,9평,수능을 모두 펼쳐두고 killer문제들(보통
하나의 모의고사에서 1등급을 가르는 어려운 3,4문제를 말합니다. 대체로 19.20.21번 혹은 28,29,30번에 있죠)만
모아서 달라진 점을 찾아보는 것이다.
문제가
어려워지는 경우도 있고 어쩔 때에는 그 유형 자체가 조금 변형되는 현상이 벌어진다.
「
대표적인 예로 몇 년 전까지만 해도 함수의 성질을 주고 이를 바탕으로 함수를 역추적하는 방식이 주를 이루었다면 이것이 최정점을 찍고 난 이후에는
함수는 주어지고 함수의 성질을 바탕으로 문제를 풀어나가는 교과서적인 유형이 발전되고 있다.
주로
21번에 배치되고 있는 이 문제유형은 또 다시 변형을 거듭하고있다.
처음에는
함수 밖의 정점이 주어지고 이 점과 함수 사이의 관계가 주를 이루었다면 이번에는 동점을 바탕으로 함수에 대한 성질을 물어보고 있다.
」
위와
같은 수능의 변화 흐름을 맹신하는 태도는 좋지 않다.
또한
이를 바탕으로 섣불리 다음의 수능을 예측하여 그런 유형에 지나친 힘을 쏟는 것도 어리석은 태도이다.
다만
기출
분석을 하다가 이런 유형에 자신이 취약하다는 것을 발견할 경우 이와 관련된 문제를 다량 분석하고 풀어봄으로써 실력을 높이는
것은
분명 필요하다.
위에서도
언급했듯이 분명 기출 문제는 흐름을 반영하고 이 현상은 앞으로도 계속될 것이기 때문이다.
p.s.
지금까지 기출 문제 분석에 대해 알아보았는 데 아직 감이 오지 않으신 분들을 위해 자필로 적은 분석노트를 첨부해드립니다.
추천도
부탁드립니다~~
또한
pdf 파일로도 올려드리니 필요하시면 복사해 쓰시길 바랍니다.
[Haru의 칼럼 1] 수학 기출 문제 분석이란? http://orbi.kr/0004705812
[Haru의 칼럼 2] 수학 개념 공부 어떻게 하나 http://orbi.kr/0004705815
[Haru의 칼럼 3] 계획 http://orbi.kr/0004705819
[Haru의 칼럼 4] 수학 모의고사 성적이 잘 나오지 않는다구요? http://orbi.kr/0004705888
[Haru의 칼럼 5] 수학 실수 어떻게 줄일까 http://orbi.kr/0004705906
[Haru의 칼럼 6] 수능 Manual 만드는 법 http://orbi.kr/0004705917
[Haru의 칼럼 7] 수학의 단계적 학습법 http://orbi.kr/0004705921
[Haru의 칼럼 8] 수학 모의고사 FEEDBACK http://orbi.kr/0004705925
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
절대 성적이 부족해서 그런 게 아님
-
받아보겠습니다
-
ㅈㄱㄴ
-
페이 관련해서 여쭈고 싶은게 있습니다. 댓글 달아주시면 감사하겠습니다.
-
요즘 유독 그렇다
-
나는 그래프 그릴때 누군가는 속옷을 벗네 재밌는 세상이야
-
성관계 미끼로 노숙자들 유인한 '여장남자'…술 마시자 '돌변'[사건의재구성] 9
(부산=뉴스1) 조아서 기자 = 2016년 6월 28일 부산 동구 한 주택. 60대...
-
근데 재밌었음...!ㅋㅋㅋㅋ
-
맞팔해놓고 팔로우 끊는거 ㅈㄴ짜치네ㅋㅋ
-
안될거같기도 하고
-
생1 커리 질문 0
오늘 생2에서 생1로 바꿨는데 백호 윤도영 한종철이랑 시대..? 있는지 모르겠네...
-
흡
-
ㅈㄱㄴ 대치나 목동
-
문돌이가 왤케많음
-
오랜만입니다. 사실 마지막 업데이트는 수능 직전이었는데, 앱스토어 개발자 계정...
-
근데 제가 쪽지해본 분들은 개인적으로 다 될거같음 오르비답게 문돌이도 다들 잘함ㄴㅎ
-
24수능 20번 풀어봄 ㅋㅋ 생2 시작 1일차 근데 이거 몇분정도 내에 끊어야 함?...
-
ㄱㄱ
-
이제는 완전 사장이구만
-
회계사vs한의사 0
황밸 같은데 업무난이도나 워라밸은 어떤가요?
-
+수능장 +나머지가 헤겔,카메라지문
-
스트레스 해소 노트
-
국내 여행하면 0
대부분 시간을 카카오맵 초정밀버스만 보고 있음 언제오냐
-
졸업자들의 진로가 궁금함
-
글쎄요...
-
진짜 안 씻기인가.. 오늘 목욕하고와서 이런 건가.. 자꾸 쥐어뜯어서 탈모오겠는데..
-
술 처마시느라 많이 안 옴...
-
오르비 잘안해서 몰루
-
그리고 미기확 선택과목제도 문제라고 생각했음 근데 28수능에 드디어 전체통합 정상화...
-
국어 인강 1
국어 인강 선택하려고 하는데 주변에서 가장 많이 듣는 국어 인강쌤은 누구인가요?
-
재수 예정이고 현역때 물1지1 선택했는데요 목표를 서울대 공대 쪽으로 잡고...
-
개념은 전부 다 알고 이해하고 있는데 내가 인강에선 개념강의만 듣고 그냥 기출만...
-
6모 4
전국수석한다. 잘있어라.
-
올해 1학기 대학 다니면서 반수 예정이고 사정상 인강을 이제부터야 들을 수 있게...
-
xx대학교 ㅇㅇ학과 2학년생은 그 학교 그 학과 졸업생들이 어디 취업하고 이 과가...
-
질문해드립니다. 74
이미지를 대신 써드릴 수도 있습니다.
-
미안 2
생각을말로뱉지못하는병이있어요..
-
가끔씩 일기올릴게
-
순대파 순대야 순대님 렐라파 렐라야 렐라님 보통 이렇게 부르는듯
-
국어 국일만 독서 전체 (앞 몇지문 제외) 국일만 문학 일부 한수 오일장 1-1에서...
-
옯찐따라 울었어 4
ㅠㅠ
-
알찬 하루였다 1
국수영으로 꽉 찬 하루
-
유치하긴 한데 레이브 31권은 다시 봐도 재밌다
-
저도이미지좀요 1
근데 뭐 내가 옯창도 아닌데 이미지 쓸게 있겠어?
-
ㅇㅇ
-
[단독]與 광역단체장 12명 중 5명, 尹 접견 추진 1
[앵커] 연휴가 끝나는 내일부터 윤 대통령의 일반 접견이 가능해지죠. 국민의힘 소속...
-
“나만 허탈한 건가?”…국회의원 설날 떡값 425만원 6
국회의원들이 올해 설날 떡값으로 425만원을 받은 것으로 나타났다. 직장인...
-
손글씨 ㅇㅈ 9
-
sin (2a파이+b) = 2a파이+b 를 보고 y=sinx 와 y=x 의 교점은...
격공 ㅋ 나만 이렇게 하고 있는게 아니란 점에서 수험생으로서 안심 ㅋ
정말 모든 사항이 똑같네요...
다행입니다. 열심히 하셔서 꼭 좋은 결과 내시길 바랍니다
근데 저 과정이 기출문제 풀 때 애초에 자연스레 녹아들어가야 문제를 풀 수 있는 거 아닌가요?? 저는 문제 풀 때마다 저렇게 생각해야 직성이 풀리는데ㅋㅋ 또 그래야 풀리기도 하구요ㅎㅎ
좋은 글 감사합니다!
자연스레 녹아드는 분들도 있지만 기계적으로 생각없이 문제를 푸는 분들이 있습니다. 마치 복사 후 붙여넣기를 하는 것 처럼요.