[JYJ칼럼] 7월30번 이른바 "연속정사영"에 대하여
게시글 주소: https://i.orbi.kr/0004714159
[JYJ칼럼] 7월30번 이른바 연속정사영에 대하여.pdf
학생들의 질문을 받다보면
"꼭 필요한 기본적인 전제를 공유하지 않은 상태"로
"본인의 특수한 하나의 방법은 왜 틀렸는가" 에 대한 설명을 요구받을 때가 있습니다.
이른바 "연속정사영"은 그런 경우 중에 하나입니다.
혹 평소 궁금해 하던 부분이었다면 참고해 보세요^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좀 알려주세요ㅠㅠ 개념은 이미 알고, 리본으로 실전개념도 하긴 했는데 까먹은 것...
-
ㅅㅂ 욕엄청먹넹 5
ㅠㅠ
-
자니...? 1
오랜만이야
-
다만들면 무료로 뿌릴테니 나중에 한번 풀어보세요
-
알바하고싶은데 2
최저받고 홀서빙하는거아니면 할게없네.. 학원보조같은건 죄다 대학 재학생, 휴학생만 뽑는대 ㅜㅜ..
-
진짜임뇨
-
ㅈㄱㄴ
-
저거 진학사 기준이긴한데....공주교대는 안될것같지만 고대세종이랑 연대미래 될까요?...
-
집 가기
-
걍 쳐잔다 아니 아까 집 올때 같이 사올걸 ㅅㅂㅅㅂㅅㅂ
-
내년에 사탐할건데 경제 ㄱㅊ나..?이번에 물1 2컷일듯
-
이쁜남자는 개좋긴해
-
친한 컨설턴트가 무조건 45래 얘는 무슨 근거로 45라고 확신하지?
-
갑자기 수시가 붙으면 이미 결제한 진학사는 어떡하나 생각이 드는데 이거 환블 안되죠
-
회사생활 절대 싫으면 맞는 말인 거죠? 돈보다 워라벨인 전제 하에 저도 동의하는데...
-
경희대 학종 네오르네상스 조기발표 안하나요?
-
지금부터 해야함
-
피램 2026 1
내년 국어 피램커리탈건데 혹시 2026버전 언제쯤 나오는지 아시나요? 12월...
-
수능안본분탕…
-
사람도없고 재미도없고..
-
ㅇㅇ
-
연애썰풀어보ㅓ 7
ㄱㄱ
-
뻥임뇨
-
님들같으면 어디감
-
일정 실력 만들어 놓으면 1년동안 공부 안해도 1719 빼고 다 맞음 근데 1년동안...
-
확 92 84 미 87 78 기 88 79
-
omr 잘못썼을까봐 진짜 개불안함
-
오늘 보닌 4
샤워안함
-
이거 ㅈㄴ 말려야하는 거 맞죠..? 조합도 레전드라..
-
실모 풀 거 다 떨어져서 써킷 X 푸는데 솔직히 이번 수능 문제 이걸로 교체해도 될...
-
저 유명인사임? 5
??
-
군수 질문 4
현역 고3입니다 , 올해 수능 망했는데 집안에서 재수 반수는 반대해서 군수 할려고...
-
진지하게 정시 국숭세단 각이어서 낼부터 준비해서 중논 갈까요….
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 0
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
-
ㄹㅇ 전과목 합해서 22만명이라는 거임?? 한 과목씩 따로 보면 4만명 정도라는 거 진짜임?
-
인서울 전화기가 목표긴한데
-
작수 수시였다가 6광탈당하고 정시로 인서울 끝자락가서 올해 반수했습니다 (작수...
-
영어 특히 해석연습이나 구문교재론 천일문 외에 또 추천해주실 교재 있나요? 혹시...
-
선지에 답이 없는듯
-
본인 고2 수학 3모 9모 10모 다 3점 한 두개씩 틀려서(미분 잘못하거나 계산...
-
키보드 ㅊㅊ좀 12
커세어 로지텍 정도밖에 안알아봤는데 ㅊㅊ좀
-
기적을 바랫지만 그러한 기적은 역시나 저에게 들어오지 않았고 이제 20대지만 20대...
-
아니면 아주대 낮은과는 가능할까요?
-
ㅈㄱㄴ
-
처음엔 학점때문에엿는데 이젠 빠져나올수없음뇨..
-
고2이고 물리 (특히 역학)에서 시간이 많이 부족하고 20분컷을 한다는 사람은...
-
중대 어디까지 되나요 반영 비율이 달라져서 컷이 많이 바뀌나요?? ㅠㅠㅠ
-
외대 경제 썼습니다 진짜 고민 ㅈㄴ되는데 조언좀 해주실분
좋은 글이네요.
수학을 잘하는 학생과 못하는 학생의 차이를 결정짓는 것은 '이게 정말 타당한가'에 대해 얼마 만큼의 스탠스를 취할수 있느냐.
답을 내는데 만족하면 결코 안정적 1등급이 될 수 없음.
인강이나 주위 선생님 혹은 교재가 중요한 이유는 이 차이를 보완해준다는 점.
앞으로도 이런 글 많이 부탁드립니다.
ps. 출제해주신 모의고사 잘 풀었습니다.
이중정사영이라니... 듣도보도 못한 논리인데요,
저걸 사용하는 애들은 어디서 저걸 배운걸까요???
설마 그냥 직관적으로 쓴걸까요
직관이 엄청나거나 직관이 거의 없거나 둘중 하나일듯
직관이 ㅈ나 없습니다 지송합니다 ㅠㅠ
너무 마음쓰지 마세요.^^ 생각보다 많은 학생들이 실제로 그렇게 답을 찾아 보았구요. 그게 안되는 이유 또한 마땅히 해명되지 않았을 테니까요. 이번 기회에 이면각의 정의와 법선벡터를 이용한 방법에 조금 더 집중해주시면 됩니다. 화이팅!!
실제로 문제풀면서 이중정사영 쓰고 이게 왜 구하고자 하는 넓이랑 같은지 증명하고 있었어요ㅋㅋ 위에서 쓰신바와 같이 수직이니까 성립된다는 것도 시간 끝나기 전에 알아서 그냥 넘어갔는데 좀 고민해봐야겠습니다 감사합니다
직관이 ㅈㄴ없네요 죄송해요
배우고 갑니다
방향벡터로 풀었기에...
허 저런 방법이;;
저렇게 했다가 뭔가 아닌거 같아서 제대로 했었는데 답이 같길래 맞나?? 했는데 확실히 아니네요.
저번에 이걸로 푸는 방법제시해서 글올리신분이 제대로 설명안해주셔서 궁금했었는데..
감사합니다
장영진 선생님
작년 29번 해설 부탁드리면 안될까요??ㅜㅜ
선생님이시라면 정말 탁월하게 해설하실 것 같은데요
글을 통한 서술이 상당한 지면의 제약을 가져올테니 쪽지로 답변을 대신한 것으로 하겠습니다.^^ 화이팅~
저도쪽지로29번 답변좀받을수있을까요ㅠㅠ
아 29번해설 저도 한번 들어보고싶습니다,,,, 그 문제때문에 벡터쪽에 두려움이생겨서 그부분을 어떻게공부해야하나 하고 고민하고있어요ㅠㅠㅠ
코사안세타두개구한걸로 덧셈정리쓰는것도잘못된풀인가요?
1777129번 게시물이 그 내용인 듯 한데 이미 댓글들로 오류인 이유들이 대략 설명되어 있습니다.
결국 각들 사이의 덧셈,뺄셈으로 구해지려면 두 교선이 서로 평행해야만 하는데 7월 30번은 전혀 평행하지 않습니다. 그럼에도 정답과 같은 결과가 나온 것은 두 평면이 바닥과 이루는 각의 코사인값이 모두 1/root3 이기 때문에 생긴 진정한 우연입니다.
안녕하세요 선생님
저도 7평 30번을 풀었었는데 평면 MPQ와 ABCD가 이루는각을 A1
평면 DEG와 ABCD가 이루는각을 A2라고 했을때
cos세타 = cos(A1+A2) 라 두고 덧셈정리로 푸는건 오류가 있는 풀이인가요?
평면 MPQ와 ABCD의 교선, 평면 DEG와 ABCD의 교선이 평행할 때만 덧셈정리로 풀 수 있습니다. 이경우엔 두 교션이 서로 평행하지 않으므로 덧셈정리로 풀면 안되며, 위위의 댓글에 언급했듯이 정답과 같은 값이 나오는 것은 두 평면이 바닥과 이루는 각의 코사인값이 모두 1/root3 이기 때문에 생긴 우연입니다.
대박 이거이거
오우 ~~ 대박~!! ㅎ 저도 수업때 그대로 얘기해야겠네요 ^^ 감사함니다~ ㅎㅎ - soowoo
큭... soowoo쌤 여기까지 출연해 주시고.. ㅋㅋ
선생님, 그렇다면 이 문제에서는 연속정사영을 이용해도 만약 '평면이 수직일 때 성립한다는 사실을 미리 알고서' 사용했다면 논리적인 하자가 없는 것인가요?