4월 수학1/2 수업 안내(주말까지 할인)
게시글 주소: https://i.orbi.kr/00055891984
안녕하세요.
상승효과 이승효입니다.
선택과목 무료특강.
예상을 훌쩍 뛰어넘는 반응! 신청자가 270명 ㅠㅠ
저도 오랜만에 100%라이브 특강이라
아주 재밌게 잘 마쳤습니다. 정말 감사합니다!!!
신청자에게는 전원 쪽지로 링크 보내드렸는데
혹시라도 못받았다면 쪽지주세요.
자~ 오늘의 본론은 공통과목!
들어가기 전에 잠깐...
수강 할인 행사가 진행되고 있으니 놓치지 마세요.
프로모션이 이번주말에 끝난다고 하네요.
"수학1 개념속성 + 기출분석" 강좌 패키지 할인!
"수학2 셀렉션 - 삼차함수" 특강 (2만원입니다.)
시간표 보러가기
https://academy.orbi.kr/intro/teacher/#3)
1. 수학1 준킬러는 결국 도형
요즘 준킬러가 핫이슈죠.
더이상 27+3 킬러대비하는 시대가 아니잖아요.
그럼 준킬러 대비하려면 문제를 많이 풀면 될까요?
푸는 것도 중요하지만, 먼저 준킬러에 대해 잘 알아야겠죠.
작년 수능 문제 한번 봅시다.
문제를 보자마자 이런 그림이 그려진다면
이 문제는 더이상 준킬러가 아니라
시험끝나고 기억도 안나는 쉬운 문제인거죠.
수학1에서 각 단원별로 중요한 포인트가 있기는 하지만
수학1을 아우르는 핵심은 바로
점 이거든요.
미분을 배우기 전에 배우는 수학1은 무조건 점이에요.
그래서 자연스럽게 도형이 문제에 활용되는 것이죠.
따라서
수학1 준킬러를 쉽게 풀기 위해서는
도형을 제대로 공부해야 합니다.
두가지.
1) 중학교 도형 - 증명까지 마스터
2) 고1 수학 - 도형의 방정식 마스터
이런걸 교과서 그대로 정확히 이해, 암기(!!) 해야 한다는 뜻.
이번주 개강하는 수학1 수업을 들으면
도형이 수학1에서 어떻게 활용되는지
완벽하게 정리할 수 있습니다.
수학1과 도형을 한번에!
비대면 올라이브 수강도 가능합니다.
"수학1 시간표 보러 가기"
https://academy.orbi.kr/intro/teacher/252/l
2. 수학2는 그래프와 식세우기
삼차함수의 그래프는 아주 중요합니다.
아직도 많은 학생들이 내신 방식에 익숙하죠.
삼차함수의 성질을 잘 정리해서 외우기만 해도
문제 해석이 엄청나게 쉬워집니다.
연립해서 계산하기, 이런 태도를 버려야 되요.
상승효과에서만 배울 수 있는 꿀팁.
"기울어진 축"에 대해서 알려드릴게요.
그래프를 그려서 해석할때 아주 중요한 개념이에요.
1) 쉬운 버전
: 문제에서 "x=1에서 극점을 갖는다." 가 주어질 때
직선을 하나 그리세요. 이
직선은 y=f(1) 이고 그래프가 접하는 '축'이 됩니다.
그래프 모양은 아래 그림처럼 4개 중에 하나겠죠.
스치면서 위에서 접하거나 / 아래서 접하거나
뚫.접하면서 우상향하거나 우하향하거나
만약 최고차향의 계수가 양수인 삼차함수라면
보라색은 해당이 안될테니 신경쓰지 말고
나머지 세 개 중에서 하나일겁니다.
2) 기울어진 축
: 문제에서 "f(1)=3, f'(1)=2" 가 주어질 때
즉, 함숫값과 미분계수가 세트로 주어지는 경우
조건을 해석해보면 이런 경우 정말 많죠.
이걸 연립방정식 푸는데 많이 쓰죠?
노노. 그래프 바로 그릴 수 있어요.
함숫값과 미분계수의 조합은
그 점에서의 접선(기울어진 축)을 알려줍니다.
(1,3)을 지나고 기울기가 2인 직선을 그리면
f(x)는 무조건 그 직선에 접하게 되어 있어요.
즉 y=2x+1 이 f(x)의 x=1에서의 접선이에요.
극점을 알려주는 문제나, 접선을 알려주는 문제나
함숫값과 미분계수를 알려주는 문제는
정확히 똑같은 조건인 것이에요~
아래 그림처럼 기울어진 축 y=2x+1이 있고
그래프는 보라색처럼 위에서 접하거나
초록색처럼 아래서 접하거나
주황색처럼 뚫고 지나가면서 접하거나....
이렇게 함수의 그래프를 '축'이라는 관점에서 이해하면
그래프를 아주 쉽게 그릴수 있고
이 칼럼에서 설명은 안했지만 식도 간단히 세워집니다.
(여기서 축은 x축 뿐만 아니라 평행이동된 축,
또는 기울어진 축도 포함되겠죠)
"셀렉션 - 삼차함수" 특강을 들으면
3시간만에 삼차함수에 대한 정말 많은 것들을
체계적으로 배울 수 있습니다.
속된말로 정말 지리는 경험, 약속하겠습니다.
등급에 관계없이 정말 깜짝 놀랄거에요.
이번주말까지만 2만원에 할인중입니다.
"셀렉션 특강 수강신청하러 가기"
https://academy.orbi.kr/booking/gangnam/payment?selected_lecture=732
그럼 다들 화이팅하시고!
궁금한 점은 댓글로 남겨 주세요 :)
유튜브에서도 꾸준히 공부법 관련 컨텐츠가 업로드 중입니다.
구독 부탁드릴게요. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사람 왤케 많냐 1
음
-
떴으니까 올리지ㅋㅋㅋㅋ
-
손샘은 비문학이 강한데 문학이 어렵다하니 문학도 해야겠고 문학이 더 시간...
-
댓이나 쪽지 남겨주시먄 감사하겠습니다...
-
후무많어중. 후많중 후중 후ㆍ듕
-
1차는 붙었는데 최저를 못 맞춘 대학이 있습니다. 아직 면접 준비가 하나도 안 되어...
-
도란 귀엽네 12
ㅇㅇ
-
기대되면 개추ㅋ 비 온다고 과잠 비닐에 싸놓는거 ㅈㄴ 한심하다ㅋㅋ
-
기억이 너무 명백한데 후자임? 2번 3번 이슈인데 마침 2 랑 3은 헷갈리기 좋은 숫자긴하긴함
-
24수능 14 25수능 14,15 번 정도의 문제 나형이면?
-
그냥 평소에 오르비 눈팅이랑 가끔 댓글만 달았는데, 칸타타님이 근거 없이 “내가...
-
둘이 맞팔도 했네ㄷㄷ 15
사귀는 거 맞다니까
-
꿀팁좀요..
-
엣큥~ 그건 기여운 와타시였네! 밥 먹기 전에 심심했음 ㅈㅅ
-
애증의 관계임. 연애한지 좀 된 장기 커플인데 이제 볼 장 안 볼 장 다 봐서...
-
밖에 개추웁네 2
덜덜
-
6일에 받으려면 가야되는거?..
-
물리 6 9 수능 50 50 48에 과외경력+학원경력 있음 수능과외 하면 얼마 받을 수 있음??
-
무슨 맛을 마실까요 블랙 제외
-
제가 심판봐드림
-
수학 모르겠어잉 6
(fㅇf)(1)이면 f(f(1))이니까 그냥 f(1) 구하면 a/4 아닌가? 왜...
-
둘다 채점했는디 ebs 백분위가 더 맛있드라구여.. 여러분들도 메가보다 ebs가 더...
-
가군 부산대학교 경영학과 나군 부산대학교 경제학과 이런식으로 지원 가능한가요?
-
헤헤ㅔㅎ헤흐흐ㅡ헤헤ㅔ흐
-
이번주에 중앙대 외대 이화여대 논술있는데 이 성적대이면 가야겠죠?
-
1컷 88가능성 충분히 있다고하셨는데 2409가 1컷이 88이었으니 올수가 작년...
-
우우 6
아파요 속이안좋아..
-
어딘가 이상하다 싶은놈들은 사실 무대응으로 일관하는게 나은것같음 한번 상대해주기 시작하면 끝이없다
-
물1vs물2 2
재능빨은 물2가 더 타나요 둘다 하지말라고 하거나 차라리 사탐하라고 댓글다는 순간...
-
뭐임진짜 아니시발 원점수라도 알려주던가 그것도안됨?
-
말그대로 잘보고싶다면 개념을 많이 보는 것보다 개념 가볍게 읽고 (회독) 모의고사나...
-
평가원 이사람들 5
지금 오르비보면서 팝콘뜯고있는거 아니겠지
-
1컷 88초과라고 보시는거 맞죠?
-
없나요 하.
-
줬다 뺏는 게 더 기분 나쁘지 않음?
-
연고공 인설약 7
연대 고대 공대 vs 이대 약대 동국대 약대 입결 상관 없이 미래 전망이나 전체적인...
-
원원시절에 평가원 과탐 고정 11이었는데 이번에 투투로 바꾸고 깨질 듯
-
성적공개좀 빨리하라고 ㅋㅋㅋ
-
시대 통계 들고 있는 물공이 제일 정확할거라고 생각함. 걍 1컷 아무리 높아봐야...
-
실력이부족한데엄한사람한테욕질이야 라는 나쁜 말은 ㄴㄴ
-
칸타타가 싫은게 아니라 그사람을 미친듯이 빨아재끼고 숭배하는 ㅡ_ㅡ <ㅡ이새끼때문임
-
등급컷 질문 2
확통 공통틀 선택틀 중 뭐가 유리한가요?
-
100 97 1 98 미적 88이라 96 or 97입니다 (97 소망ㅠ)
-
이제 4명 남았군요.
-
통계상으로도 그건 진짜 말이 안되는수치임 생각해보셈 이번수능이 정답률이 6모보단...
-
곧 한국도 올라오겠다
첫번째 댓글의 주인공이 되어보세요.