수학 잔기술 3개
게시글 주소: https://i.orbi.kr/00062371148
안녕하세요? 지인선입니다.
오늘 칼럼 두 개 썼읍니다.
좋아요와 팔로우해주시면 더 써오겠습니다.
감사합니다.
1. 삼차함수 f(x)에 대한 추론 문제에서, f(x)가 기함수라는 조건이 주어졌다고 하자.
그럼 대충
로 쓸 수 있겠다.
근데 문제에서 f(x)의 극값에 관한 조건이 있다.
그런데 위의 형태에서 f(x)를 미분한 도함수 f'(x)는
이라서, 도함수 값이 0이 되게 하는 x의 값은
이고, 이 값을 f(x)에다가 대입을 하면... 어우 끔찍하다.
차라리 처음에 b를 쓰는 대신 -3ap^2을 써서 (단, p>0)
이렇게 쓰면 어떨까? 이 식을 미분하면
이므로, x=p와 x=-p에서 극대극소임을 쉽게 알 수 있고, x=p를 f(x)에 대입하면
라고 쉽게 식을 쓸 수 있고, 극값 정보를 쉽게 활용 가능하다.
2. 다음 적분이 있다고 하자.
이 값을 계산할 때,
으로 전개하여서,
이렇게 계산하지 말고,
이므로,
특히, 이런 trick은 정적분함수 넓이 공식 유도에 도움이 된다.
EX) 예를 들어, 최고차항의 계수가 a인 삼차함수 f(x)가
이라 할 때, y=f(x)와 x축으로 둘러싸인 부분의 넓이를 구해보자.
여기에 절댓값을 씌워주면,
어디서 많이 본듯한 공식이 나온다.
3. 등차수열 an의 첫째항부터 제 n항까지의 합을 Sn이라 할 때,
Sn을
이렇게 나타내는 것이 좋다. 크게 다음과 같은 2가지 이유가 있다.
1) 최고차항인 a는 공통부분으로서 묶어지는 경우가 많기 때문이다.
예를 들어,
이라는 조건이 주어지면,
이라는 식에서 a는 쉽게 사라지고, k=5임을 쉽게 얻을 수 있다.
2) k가 2보다 크지 아닌지, 자연수라면 홀수인지 짝수인지에 따라 Sn의 양상이 쉽게 결정되기 때문이다.
만약 k가 2이하라면, Sn은 쭉 증가하거나 쭉 감소한다.
만약 k가 짝수인 자연수라면, (즉, k=2m이라면)
Sn은 n=m에 대하여 대칭인 관계에 있고, n=m일 때 최대나 최소를 갖는다.
그리고, 합이 2m인 두 자연수 p, q에 대하여
이므로, 자연수 범위에서 대칭 구조를 갖는다. 또한,
이므로,
즉, am과 a{m+1}은 서로 부호가 반대인 관계에 있음을 알 수 있다.
만약 k가 홀수인 자연수라면, (즉, k=2m-1이라면)
Sn은 n=m-1/2에 대하여 대칭이고(자연수는 아니지만 편의상), n=m이거나 m-1일 때 최대 또는 최소이다.
그리고, 합이 2m-1인 두 자연수 p, q에 대하여
이므로, 자연수 범위에서 대칭성을 갖는다. 또한,
으로부터
임을 알 수 있다.
만약 k가 양수인데 자연수가 아니라면,
이도록 하는 서로 다른 두 자연수 p, q가 존재하지 않는다. (p+q=k이어야 하므로)
따라서, Sn은 어떠한 대칭성도 갖지 않으므로,
자연수 범위 n에서 Sn은 일대일함수이다.
0 XDK (+2,000)
-
1,000
-
1,000
-
ㅇㅂㄱ 9
-
https://n.news.naver.com/article/020/0003609015...
-
얼버기 20
오르비언들 행복해야해요
-
경희대 빵 14
2칸스나로 넣었는데 85명 뽑는데 점공계산기로 지금 예비 31 뜹니다. 이거 될 수도 있을까요 ?
-
[단독] 검찰, 마약 매수 '깐부' 회장 여친 사진 공유 자료 확보 5
[서울=뉴시스] 오정우 기자 = 수도권 명문대 대학생 2000여명이 가입한 전국...
-
살빼야겠음ㄹㅇ 4
중3졸사는 얄쌍한데 지금은 무슨 좃돼지가 한 명잇노..
-
고대 언제 떠 2
-
그냥 작년이랑 원리 자체는 비슷한데 일단 지원자 자체가 적고(아무래도 전전에 어그로...
-
메타도 계속 바뀌고 패치를 꾸준히 해줘서 질리지가 않음
-
생명1 훈수 좀 0
고2 때 내신으로 한 바퀴 꼼꼼히 돌렸었음 막전위 근수축 유전할 때만 학원 들었었고...
-
2학기 휴학했다가 반수 실패하면 돌아갔을때 수습불가한가요? 3
1학기는 수업 잘 들었다치고 2학기는 휴학해서 바로 반수준비할때.. 만약 실패한다면...
-
미미미누 참가자 얼굴보고 뽑음? 너무 외모지상주의 아닌가 앞으로 헬스터디 3 전회차 시청한다 딱대
-
저는 그사람의 수업을 들은적도 없고, 댓글알바시절 수험생도 아니지만, 범죄를...
-
제가 상근이라 훈련소가 3월 중순에 끝나는데 그때 쯤에 시대라이브 현정훈 듣기...
-
내가 생각하는 노프사 실현해볼까 생각중임 레어도 승인 중지된거같고
-
흐흐흐흐 좋네
-
연세대vs고려대 2
일단 빵은 연세대가 이겼다 초코랑 녹차 크림빵 냉동실에 얼려서 드셔보세요 이거...
-
롤 탑 추천좀 43
문도 원챔인데 맨날 아래에서 사고가 좋게든 나쁘게든 크게 나서 템 나오고 크기 전에...
-
맞팔99 3
옥땅으루 따라와.
-
좀 도와줘라.
-
펴자마자 기하가 그리워지는구나.. 근데 정사영 보면 다시 확통이 그리울 듯
-
한티 밥짓는집 2
왔다
-
A는 B라는 것에서 B`는 C함을 알 수 있다 이런 형식의 선지를 만들 때 평가원...
-
닉변 완료. 1
후후...
-
맬 2,3시까지 놀아도 갠찮았는데 요즘음 10시만 되도 피곤함이...
-
24학년 헌내기예요
-
서울대 입학시험 일정 10
텝스나 수학 시험 같은거 서울대 기초교육원 공지사항에 나와있네요 메인 홈페이지에...
-
와 너무 심한데…
-
그러니까 안되겠다 더이상 못하겠다 감이 들면 이제 그만하고 입시판 뜨는것도 방법임...
-
뜬금포 ㅇㅈ 1
흐헤헤
-
“대회도 나갔었는데” 과학상자 영업종료… 8090 추억 품고 43년 역사 마무리 25
1980~90년대생들에게는 초등생 시절 과학교재로 친숙한 ‘과학상자’가 이달 영업을...
-
중대경영 컷 2
중대 경영 컷 진학사에서 얼마로 잡았는지 아시는분 있으신가요ㅜㅜㅜ
-
진짜 잘 낸 수학 문제 20
교사경까지 통틀어서 난이도랑 관계없이 이 문제는 진짜 잘 냈다 하는 수학 문제 있나요?
-
22 33354 23 군대 24 55365 / 군수 25 13322 / 12학점...
-
정말 좀 친다 하는 문과생들 cpa 준비 많이 해서 회계사가 그렇게 잘버나 싶네요
-
벌써 몇번째인지 모르겠노 접을때가 됐나
-
새터 날짜 2
새터 보통 날짜가 어떻게 되나요? 오티도 알려주세요!
-
눈 침침하고 물 많이마시고 발 저리고 밥 많이먹는데 혈당치는 찌를때마다 지극히...
-
口是禍之門 (구시화지문) 입은 화를 부르는 문이고 舌是斬身刀 (설시참신도) 혀는...
-
전자후자 뭐가더좋음?
-
궁금함
-
Was turn?
-
몽글몽글
-
ㄹㅇ 궁금한디 썰좀 풀어주세요
-
확통런 3
안녕하세요 올해 재수를 하는데 선택과목때문에 고민이 많습니다...2025학년도 수능...
-
차기 갤주 등장 2
대 요 요
-
자가진료는 좀 필요해보이긴 함
-
현역이 실모 시즌에만 바짝 해도 백분위 99가 나옴
방금 수학 점수가 4점 상승했다
확통이도 체화했을때 이득인 부분일까용..? 1번2번은 미적하는 친구들이 주로 하는 걸 봐서요!! ㅜㅜ 수감각이 전혀없어서 혹시 쓰다가 실수하고 그럴까봐 쪼끔 무서워서리 ..~
굳이굳이임 말그대로 잔기술
공통에선 저렇게 계산 ㅈㄴ 더럽게 나오는 문제가 없어서 확통이면 굳이 저런걸 다 챙길 필요는 없긴함
와….
수능판 ㅈㄴ 고였네 ㅋㅋㄴ
개맛있노...
와…ㅋㅋ
여러분 저런능력을갖고싶으십니까? 그럼 우리병훈샘수업을들으십시오
병훈쌤이 강조하시는 내용ㅎㅎㅎ
ㅈ1ㄴ달다 ㅋㅋㅋ 이게 진정 고인물 ㄷ
인수분해된 다항함수 적분할 때 주로 부분적분법을 썼는데 저렇게 간단한 식 조작해서 테일러 전개 느낌나게 하는 거 좋네요! 감사합니다
ㄹㅇ 이건 ㅈㄴ 유용한거같음 ㅅㅅㅅ 왜 극한식보고 인수단위로 묶는거는 잘해놓고 적분할때 이런생각은 못했지 ㄹㅇ.. 배우지않곤 아무것도 쳐모르는나
이런 부분에서 재능 혹은 살면서 쌓아온 두뇌 훈련양의 차이가 보이는 것이 아닐지.. 싶네요
더 없나요 더 없나요 더 없나요ㅠㅠㅠ
맞죠 미지수 설정할때는 의미를 가지게 설정해야됨 ㅋㅋ
2번은 쉬우면서 개꿀인팁이네요
신
적분 진짜 생각도 못했는데 개쩌네 ㄷㄷ
4번 적분은 x축방향으로 -3 만큼 평행이동시켜서 푸는것도 좋아요.