곱/몫/합성함수 미분법 증명 by 미분계수의 정의
게시글 주소: https://i.orbi.kr/00062603676
해봅시다.
우선 이건 도함수의 정의입니다. 미분계수의 정의를 일반화하는 식으로 우리가 공부했었죠!
<곱의 미분법>
미분가능한 함수 f(x), g(x)에 대해 f(x)g(x)의 도함수를 구해봅시다.
우리는 함수 f(x), g(x)가 미분가능함을 알고 있기 때문에 아래의 두 극한이 수렴함을 알고 있습니다.
그럼 이를 활용해서 lim를 분배해볼 생각을 할 수 있으니 극한식의 분자를 다음과 같이 조작해봅시다.
그럼 이렇게 식을 정리해볼 수 있겠고
이제 각각이 수렴하니 lim를 분배해주면
다음과 같이 수렴할 것입니다.
곱의 미분법 증명 끝!
<몫의 미분법>
미분가능한 함수 f(x), g(x)에 대해 f(x)/g(x)의 도함수를 구해봅시다. 참고로 이는 수학2에서는 나오지 않고 미적분에 나옵니다.
뭐 일단 아까와 마찬가지로 f'(x), g'(x)가 존재함을 아니 이를 활용하기 위해 식 조작 해봅시다. 분모 분자에 g(x)g(x+h)를 곱해주면
이렇게 됩니다. 이제 극한식 써먹기 위해 또 분자에 식 조작을 해주면
여기서 이렇게 묶어줄 수 있겠죠
그럼 이제 각각이 수렴하니 lim를 분배해주면
다음처럼 수렴함을 알 수 있습니다.
몫의 미분법 증명 끝!
<합성함수 미분법>
실수 전체의 집합에서 미분가능한 함수 f(x), g(x)에 대해 f(g(x))의 도함수를 구해봅시다.
마찬가지로 f'(x), g'(x)가 존재함을 아니 활용하기 위해 식 조작을 해봅시다. g(x+h)-g(x)를 나누고 곱해주면
말이 헷갈리니 잠시 x=a에서의 미분계수로 바라보면
함수 f(x)와 g(x)의 정의역 내의 임의의 실수 a에 대해 함수 f(x)는 x=g(a)에서 미분가능하고 g(x)는 x=a에서 미분가능하니 우리가
이렇게 lim를 분배할 수 있음을 알 수 있죠. 다시 말해
로 lim를 분배할 수 있을 것입니다. 그럼 왼쪽의 식은 점 (g(x), f(g(x))와 점 (g(x+h), f(g(x+h)) 사이의 평균변화율의 극한이니 x(독립변수)=g(x)(상수값)에서의 f(x)의 미분계수를 의미하고 오른쪽의 식은 점 (x, g(x))와 점 (x+h, g(x+h)) 사이의 평균변화율의 극한이니 x(독립변수)=x(상수값)에서의 g(x)의 미분계수를 의미하겠죠! 즉, 정리하면
가 될 것입니다. 합성함수 미분법도 증명 끝!
자 이렇게 고등학교 교육과정에서 마주하는 미분계수의 정의를 통해 증명 가능한 세 가지 미분법에 대해 알아봤습니다. 특히 확률과 통계 선택자 분들 중에 증명 과정 없이 결과만 외우며 학습하시는 분들이 많다 느껴서 이 글 확인하시고 적어도 곱의 미분법에 대해서는 증명 과정을 익혀두시면 좋겠습니다. 몇 번 따라해보시고 반복 학습을 통해 스스로 유도해보면 어렵지 않게 기억하실 수 있을 거예요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
口是禍之門 (구시화지문) 입은 화를 부르는 문이고 舌是斬身刀 (설시참신도) 혀는...
-
전자후자 뭐가더좋음?
-
궁금함
-
Was turn?
-
몽글몽글
-
ㄹㅇ 궁금한디 썰좀 풀어주세요
-
확통런 3
안녕하세요 올해 재수를 하는데 선택과목때문에 고민이 많습니다...2025학년도 수능...
-
차기 갤주 등장 2
대 요 요
-
자가진료는 좀 필요해보이긴 함
-
현역이 실모 시즌에만 바짝 해도 백분위 99가 나옴
-
이게 건축공학처럼 보여? 빼박 건축학과 아니야??? 자전 전공소개에 이렇게 돼있으면...
-
차단 꾸욱 9
-
근데 정신건강을 좀 챙겨야거같아요 선생님 의사샘이신거같은데 환자보기보다도 자신을 좀...
-
너무 즐거워서....다들 투투 해야겠지? (제발 해주세요)
-
작수 높4등급 나왔는데 문학은 3개 틀리고 비문학은 6개 정도 틀렸어용 나머진...
-
오스 보드따고 로컬 나간다 해서 오쓰 그 자체가 자기 전문이 되는게 아님 환자를...
-
홍대 기계 점공 7
붙을 수 있을 까요??
-
개정 많이 됬나요???
-
좋은걸까요 안좋은걸까요
-
아수라에서 올해 수능 이럴'수도' 있어 라고 한것중에 진짜 그렇게 된게 많긴한듯...
-
지금 수업구성이 어떻게 되나요?? 뭐하는지 알려주세요..
-
빵이었으면.. 고대 저처럼 점공률 40퍼 밑인분들 있을까요?
-
젊은 성인 2형 당뇨 증가세...고칼로리 식습관에 의한 비만 인구 증가가 원인 4
[이데일리 이순용 기자] 식습관, 생활습관 등의 변화로 만성질환이라 불리는...
-
재밋음
-
별 감정 안 생길 줄 알았는데 슬프네 내가 굉장히 많이 미워핬던 사람인데도
-
아가 기상 8
모두 안녕
-
물1 4만 5천명 화1 2만 5천명 생1 8만명 지1 12만명 물2 1만명 화2...
-
정수 범위 내에서 한정짓나요? 분수까지 따지면 모든 수의 약수 배수는 모든 수가...
-
뭔가 아 됐다 싶은 강의는 나름 풀이 체제가 잡히는 느낌인데 아닌 거는 진짜...
-
진로 원서 취업 학교생활등 다 괜찮습니당
-
이게 보통인거같기도.. 학과랑 완전히 같은분야도아니고 보통 대학가서 찾나 적성은
-
재수생이고 현역때 생1 지1 수능 개말아먹고 투사탐(사문 세지) 하려고 하는데 둘...
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
고려대경영 고려대식품공 어디가나음
-
신기하군뇨
-
정을선전에서 개털리고 갑민가 어버버했는데 원본 읽고 풀기만해서는 나는 개털린다는거 깨달았네요 ㅅㅃ
-
앞으로 이런 문법적인 부분을 ‘시경외‘하지 말도록 합시다
-
공스타 시작.. 2
사수까지 하다보니…뭔가 새로운 즐거움을 찾고 싶어 공스타 개설 했다는.. 사수해서...
-
대부분 저거보다 많이 썼을건데 대충 1년에 천만원 잡아도 초중고 12년동안 니들한테...
-
https://youtu.be/2b1IexhKPz4?feature=shared...
-
전적대는 건대임
-
늦버기 3
잘잤다
-
진학사 8칸 0
진학사는 8칸이었는데 학교홈페이지에 성적넣어보니 추합으로 뜨네요 ㅡㅡ; 이거...
-
얼부기 2
수면패턴 정상화
-
수12 확통하는데 매일 문제를 풀려고 하거든요 각각 하루에 몇문제씩은 꼭 푸는 게...
-
생2vs지1 3
님들이라면 뭐함 목표는 당연 1~만점임
-
우리집 진짜 가난해서 보증금은 당연하고 월세낼 돈도 빠듯한데…. 걱정된다
-
누가 더 끌리나요?
-
혹시 실패할시 계획이 다들 어떻게 되시나요? 전과재수? 그냥졸업?
합성함수 미분법 증명 틀렸어요..
1. f(g(x+h))를 f(g(x+h)로 표기했던 것 수정했습니다
2. 미분가능한 함수 f(x), g(x)라 할 때 일반적으로 정의역을 실수 전체의 집합으로 잡는데 '실수 전체의 집합에서'라는 워딩을 추가함으로써, 함수 f(g(x))의 g(x)=g(a)에서의 미분가능성을 조사할 때 'f(g(x))를 정의한다'는 표현을 명시하지 않은 부분이 문제 될 수 있음을 고려해 g(a)가 f(x)의 정의역에 포함되지 않을 수 있는 경우를 배제했습니다.
감사합니다!
아뇨 근본적으로 틀렸습니다.. 많이들 하는 실수긴 해요 이거
g(x)가 x=a를 포함한 어떤 열린 구간에서 상수함수일 때 g(x+h)-g(x)=0이기에 본문의 과정처럼 식을 조작할 수 없음을 말씀해주신 건가요?
이외의 증명 과정 자체에는 문제가 없습니다. 고등학교 미적분에서 합성함수 미분법은 저렇게 g(x+h)-g(x)를 나눠주고 곱해준 후 각각의 평균변화율이 수렴함에 따라 lim를 분배하는 방식으로 증명합니다. Essential Calculus Early Transcendentals: Metric Version 2nd edition International Edition by James Stewart 에도 y=f(g(x))를 y=f(u), u=g(x)로 바라본 후 lim를 분배하는 방식으로 설명하고 있습니다.
고등학교 미적분에서 주로 다루는 대부분의 미분가능한 함수의 경우 특정 구간에서 상수함수일 때가 없기 때문에 위와 같이 증명을 보였는데, 말씀하신 것처럼 엄밀하게 합성함수 미분법 다시 말해 연쇄 법칙 (chain rule)을 증명하려면 아주 작은 오차 입실론_1, 입실론_2를 잡아 설명해야하긴 할 것입니다.
스튜어트 칼큘러스도 체인룰 챕터 보시면 그 챕터 끝에 제대로 된 증명을 따로 소개 하긴 합니다.. 물론 전 스튜어트가 좋은 책은 아니라고 생각하지만 어쨋든 고등학교 교과서나 정석같은곳에 있는 증명은 틀린것이 맞습니다.
오 그렇군요... 감사합니다 하나 배웠습니다! 스튜어트 미적분학 연쇄법칙 뒤에 나오는 제대로 된 증명은 저도 처음 봤을 때 신기해서 익혀둔 상태였습니다. 위 답글의 마지막 부분에서 언급한 아주 작은 오차 입실론들을 이용한 증명이 이를 언급한 것이었어요, 다만 함수의 극한을 직관적으로만 정의하는 고등학교 과정에서 '오차'라는 개념을 갖고 오는 게 어려울 것 같다는 점과 위의 곱미분과 몫미분에서 미분계수의 정의에서의 식 조작을 통해 공식을 증명한 방법과 같은 방법으로 진행하고 싶던 점에서 본문과 같이 증명을 남겼었는데 잘못되었을 경우에 대해서는 생각하지 못했었네요 ㅋㅋㅋㅋ 감사합니다
증명이라는 것이 엄밀해야하는데 g(x+h)-g(x)=0를 고려하지 않았다는 점에서 증명 과정에 오류가 있다고 말하는 것이 적절하겠네요. 교과서와 한완수에서도 본문과 같은 방식으로 극한을 증명해둔 것을 확인했기 때문에 '고등학교 미적분 수준에서는' 크게 문제가 없다고 봐도 괜찮을 것 같습니다.
증명 대충 스케치 해봤어요
오 저렇게도 증명할 수 있군요!! 감사합니다 신기하네요 아래 말씀해주신 책도 지금 공부하고 있는 책 마친 후에 찾아볼게요
g가 분모에 가면서 오류가 발생하는 거긴 한데.. 제대로 증명하려면 극한에 대한 이해가 필요해요
Stephen Kenton The College Mathematics Journal Vol. 30, No. 3 (May, 1999), pp. 216 읽어보시면 재밌을 거예요.