2023학년도 6월 22번 논리적 풀이
게시글 주소: https://i.orbi.kr/00062618854
함수 g(x)가 실수 전체의 집합에서 연속이므로 x=0에서도 연속일 것입니다. f(x)도 연속함수이니 그럼 다음이 성립합니다.
이제 저 극한을 해석해줘야하는데 우선 (분모)->0일 때 t=-3, t=6일 때가 아니면 수렴하니 (분자)->0이어야 겠습니다. 그럼 g(-3)=0임을 알 수 있습니다. (근데 g(x) 정의된 것 보면 당연하긴 하죠)
이제 극한이 부정형이고 분자에 루트와 -가 있으니 유리화를 해봅시다.
한결 편한 형태가 되었네요. 이때 x->-3인 상황이므로 g(x)는 x<0의 형태를 가져와야합니다.
자 그럼 ㅣabㅣ=ㅣaㅣ*ㅣbㅣ임을 활용해주면
가 되겠습니다. ㅣx+3ㅣ을 편하게 생각하기 위해 이제 우극한, 좌극한 따로 생각해봅시다.
이때 (분모)->0인데 (분자)->0이 아니면 발산하니 f(-3)=0일 것입니다. (f(x)는 연속함수)
이때 f(x)가 최고차항의 계수가 1인 이차함수이니 다음과 같이 식을 작성할 수 있습니다.
그럼 이 형태를 다시 집어넣어 정리해주면
분모가 0이 아닐 때 다음으로 수렴할 것입니다.
또 좌극한도 마찬가지로 생각해주면
그럼 g(t)가 0이 아니면 극한이 수렴함을 알 수 있습니다.
이어서 극한이 존재하지 않는 상황은 g(t)=0인 상황과도 같음을 알 수 있습니다.
따라서 극한이 존재하지 않을 때의 t값이 -3과 6이라는 것은 다음을 의미합니다.
동시에 이외에는 방정식 g(x)=0의 근이 없음을 의미합니다.
g(-3)=0은 자명하고 우리가 얻은 것은 g(6)=0입니다. 그럼
이때 a는 양수이기에 f(6-b)=0임을 알 수 있습니다. 그럼 6-b=-3 or 6-b=k 이므로 b=9 or b=6-k 입니다.
그런데 만약 b=6-k라면 f(x-b)=f(x+k-6)=(x+k-3)(x-6).
이때 방정식 g(x)=0은 x<0에서 -3, k를 근으로 갖고 x>=0에서 3-k, 6을 근올 갖습니다.
-3과 3-k가 일치하거나 6과 k가 일치할 때는 k=6인 상황이므로 b=0이 되어 b>3 조건에 모순입니다.
k와 3-k가 일치할 때는 k=3/2인 상황이므로 방정식 g(x)=0이 x>=0에서 3/2를 근으로 가져 모순입니다.
k와 -3이 일치하고 3-k와 6이 일치할 때, k=-3일 때는 상황이 성립하며 b=9입니다.
따라서 b=9 확정입니다. (b=6-k일 때 가능한 조합이며, b=9일 때와 같은 상황이니)
그럼 다시 돌아와 f(x-b)=f(x-9)=(x-6)(x-k-9) 입니다.
이때 방정식 g(x)=0은 x<0에서 -3, k를 근으로 갖고 x>=0에서 6, k+9를 근으로 갖습니다.
-3과 k+9가 일치하거나 k와 6이 일치할 때는 각각 -12, 15라는 근이 생기므로 안되고
-3과 k가 일치하고 6과 k+9가 일치하는, 즉 k=-3일 때가 적절하겠습니다.
이제 f(x) 결정됩니다.
g(x) 연속 조건으로부터 처음 얻었던 정보에 b=9를 활용해주면
f(0)=9이고 f(-9)=36이므로 a=3/4가 될 것입니다.
이제 답 구해주면 끝입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
새터 날짜 2
새터 보통 날짜가 어떻게 되나요? 오티도 알려주세요!
-
눈 침침하고 물 많이마시고 발 저리고 밥 많이먹는데 혈당치는 찌를때마다 지극히...
-
口是禍之門 (구시화지문) 입은 화를 부르는 문이고 舌是斬身刀 (설시참신도) 혀는...
-
전자후자 뭐가더좋음?
-
궁금함
-
Was turn?
-
몽글몽글
-
ㄹㅇ 궁금한디 썰좀 풀어주세요
-
확통런 3
안녕하세요 올해 재수를 하는데 선택과목때문에 고민이 많습니다...2025학년도 수능...
-
차기 갤주 등장 2
대 요 요
-
자가진료는 좀 필요해보이긴 함
-
현역이 실모 시즌에만 바짝 해도 백분위 99가 나옴
-
이게 건축공학처럼 보여? 빼박 건축학과 아니야??? 자전 전공소개에 이렇게 돼있으면...
-
차단 꾸욱 9
-
근데 정신건강을 좀 챙겨야거같아요 선생님 의사샘이신거같은데 환자보기보다도 자신을 좀...
-
너무 즐거워서....다들 투투 해야겠지? (제발 해주세요)
-
작수 높4등급 나왔는데 문학은 3개 틀리고 비문학은 6개 정도 틀렸어용 나머진...
-
오스 보드따고 로컬 나간다 해서 오쓰 그 자체가 자기 전문이 되는게 아님 환자를...
-
홍대 기계 점공 7
붙을 수 있을 까요??
-
개정 많이 됬나요???
-
좋은걸까요 안좋은걸까요
-
아수라에서 올해 수능 이럴'수도' 있어 라고 한것중에 진짜 그렇게 된게 많긴한듯...
-
지금 수업구성이 어떻게 되나요?? 뭐하는지 알려주세요..
-
빵이었으면.. 고대 저처럼 점공률 40퍼 밑인분들 있을까요?
-
젊은 성인 2형 당뇨 증가세...고칼로리 식습관에 의한 비만 인구 증가가 원인 4
[이데일리 이순용 기자] 식습관, 생활습관 등의 변화로 만성질환이라 불리는...
-
재밋음
-
별 감정 안 생길 줄 알았는데 슬프네 내가 굉장히 많이 미워핬던 사람인데도
-
아가 기상 8
모두 안녕
-
물1 4만 5천명 화1 2만 5천명 생1 8만명 지1 12만명 물2 1만명 화2...
-
정수 범위 내에서 한정짓나요? 분수까지 따지면 모든 수의 약수 배수는 모든 수가...
-
뭔가 아 됐다 싶은 강의는 나름 풀이 체제가 잡히는 느낌인데 아닌 거는 진짜...
-
진로 원서 취업 학교생활등 다 괜찮습니당
-
이게 보통인거같기도.. 학과랑 완전히 같은분야도아니고 보통 대학가서 찾나 적성은
-
재수생이고 현역때 생1 지1 수능 개말아먹고 투사탐(사문 세지) 하려고 하는데 둘...
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
고려대경영 고려대식품공 어디가나음
-
신기하군뇨
-
정을선전에서 개털리고 갑민가 어버버했는데 원본 읽고 풀기만해서는 나는 개털린다는거 깨달았네요 ㅅㅃ
-
앞으로 이런 문법적인 부분을 ‘시경외‘하지 말도록 합시다
-
공스타 시작.. 2
사수까지 하다보니…뭔가 새로운 즐거움을 찾고 싶어 공스타 개설 했다는.. 사수해서...
-
대부분 저거보다 많이 썼을건데 대충 1년에 천만원 잡아도 초중고 12년동안 니들한테...
-
https://youtu.be/2b1IexhKPz4?feature=shared...
-
전적대는 건대임
-
늦버기 3
잘잤다
-
진학사 8칸 0
진학사는 8칸이었는데 학교홈페이지에 성적넣어보니 추합으로 뜨네요 ㅡㅡ; 이거...
-
얼부기 2
수면패턴 정상화
-
수12 확통하는데 매일 문제를 풀려고 하거든요 각각 하루에 몇문제씩은 꼭 푸는 게...
-
생2vs지1 3
님들이라면 뭐함 목표는 당연 1~만점임
-
우리집 진짜 가난해서 보증금은 당연하고 월세낼 돈도 빠듯한데…. 걱정된다
금테 책참 ㄷㄷ 멋져요!
감사합니다! 입시 커뮤니티에서 팔로워를 300명이나 모으다니... 수능 수학 말고 경제학을 좀 공부해야할텐데 ㅜㅜ 가까운 미래에 '내가 생각하는 경제학에 대하여' 같은 글로 돌아올 생각을 해야겠네요
오 멋지네요 기대하겠습니다!
감사합니다, 이상 님도 오늘 남은 2시간 가량과 내일 하루 파이팅입니다!
오류가 있네요. 문제의 극한식의 -3에서의 좌극한과 우극한 모두g(t)=\=0일 때, |k+3|/2|g(t)|입니다. 따라서 f(x)를 확정하기 위해선 b>3이라는 조건을 활용해야 합니다.
감사합니다, 수정했습니다. 중간에 ㅣx+3ㅣ 절댓값 푸는 과정에서 -를 한 번 빼먹었었네요. 풀이 쓰다보니 b>3 조건은 k 후보값 찾는 논리로 자연스레 쓰인 것 같은데 확인해주시면 감사드리겠습니다.
ebs 해설 확인해보고 왔는데 k를 b에 대해 표현하면 b>3 조건으로 x>=0에서 g(x)의 함숫값이 0이 될 때가 6으로 유일함을 보일 수 있군요!