우함수, 기함수 적분 성질 증명
게시글 주소: https://i.orbi.kr/00062656022
우함수는 정의역 내의 모든 x에 대해 다음을 만족하는 함수를 의미합니다.
그래프를 그려보면 y=f(x)의 그래프가 y축 대칭임을 확인하실 수 있을 것입니다.
기함수는 정의역 내의 모든 x에 대해 다음을 만족하는 함수를 의미합니다.
그래프를 그려보면 y=f(x)의 그래프가 원점 대칭임을 확인하실 수 있을 것입니다.
대칭성은 그래프 개형을 파악하거나 계산을 할 때 직접 해결해야할 양을 줄여주기 때문에 무언가를 할 때 항상 먼저 떠올리시면 도움이 될 확률이 크다고 말할 수 있겠습니다. 또한 꼭 함수에 관한 이야기를 하지 않더라도 확률과 통계 문항을 풀 때 경우의 수를 쉽게 구하려면 대칭성을 고려하는 것은 핵심적인 사고과정이라 말할 수 있겠습니다, 사실 합의 법칙과 곱의 법칙도 수형도의 뒷부분이 같냐 다르냐를 구별하는 것이기에 대칭성에 대해 잘 이해하고 있는지를 묻고 있다고도 생각해볼 수 있겠죠!
우리는 수학2에서 다음과 같은 성질을 공부합니다.
즉, 우함수면 x=0에 대칭인 구간을 잡아 적분하면 그것은 절반만 해서 2배한 값과 같고 기함수면 적분값이 0이라는 것이죠.
대충 y=x^6이나 y=x^7 정도 생각해보면 직관적으로 성립할 것임을 알 수 있습니다.
혹은 미적분의 기본 정리를 통해 직접 계산해보아도 증명할 수 있겠죠.
참고로 미적분의 기본 정리란 다음을 의미하며, 정적분의 정의는 미적분에서 구분구적법을 학습해야 엄밀하게 보일 수 있기 때문에 (물론 이 또한 극한을 이용한 것이라 정말 엄밀하게는함수의 극한을 제대로 정의하는 방법인 입실론-델타 논법을 공부해야하겠지만요) 저는 수학2에서 소개하는 정적분의 정의를 '미적분의 기본 정리 (the fundamental theorem of calculus)'라고 부릅니다.
자 그럼 우함수일 때부터 위의 적분식을 증명해봅시다. 우선 대칭성을 활용하기 위해 구간을 끊어주고
이제 f(-x)=f(x)를 활용해봅시다
미적분에서 학습할 수 있는 치환적분법으로 다음의 치환을 해주면
적분식은 아래와 같이 변하겠습니다.
자 이때 우리가 y와 dy에 y는 더미 변수 (dummy variable), 다시 말해 최종값에는 등장하지 않고 y 대신 아무거나 써도 상관없음을 알고 있으므로
뭐로 잡든 상관이 없을 것입니다. 그럼 편의상 x로 잡아봅시다. 이제 원래 적분식에 집어넣으면
임을 보일 수 있겠습니다. 우함수일 때 증명 끝! 이제 기함수일 때를 봅시다.
마찬가지로 대칭성을 활용하기 위해 구간을 나눠주고 대칭성을 활용해줍시다.
마찬가지로 -x=y로의 치환적분을 해주면 증명 끝입니다.
따라서 우리는 치환적분법을 활용해 우함수와 기함수를 적분할 때 적분 구간이 x=0에 대칭이면(?) 각 값이 특수하게 결정됨을 확인했습니다. 물론 닫힌 구간 [-a, a] 꼴에서 적분한다고 무조건 '오! 기함수 아님 우함수겠다'라고 생각할 수 있는 것은 아니지만 대부분의 경우 그렇게 먼저 의심했을 때 계산량이 확 줄어들더라구요 ㅎㅎ (특히 평가원, 수능에서)
학습에 도움이 되었으면 좋겠습니다!
p.s. 참고로 제가 오르비에 공유하거나 남기는 자료는 제 과외 목적 등으로 활용하기 때문에 글을 보시는 분들도 모두 무단 이용하셔도 상관 없습니다. 뭐 애초에 공개적인 웹에 내가 무언가를 남긴다는 것 자체가 누구든 확인할 수 있으니 사용해도 할 말 없다는 뜻이기도 하지만 말이에요 (법적으로 문제가 되더라도 본인이 공개한 이상... 몰래 쓰여도 할 말 없으니)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
본인이 있는 세상이 전부고 나머지는 떨거지 버러지라 생각하는 게 진짜 문제임 내가...
-
점공 고속 1
지금 점공상태에서도 고속써서 빠질지 안빠질지 볼수있나요
-
작수 물지 94 94에서 생윤사문으로 런쳤는데 생윤 개념 엇캐 공부해야될지 감도 잘...
-
전자는 최초합 후자는 추합 이유도 적어주세용 ㅎㅎ
-
공부에 뜻있는 사람들이 모인 시대재종에서 1년동안 다같이 으쌰으쌰 공부했을때 낸...
-
개념 몇 회독 후 기출붐석 강의 듣는 건가용? 그리고 제가 혼자 기출 1회독 하구...
-
25학년도 수능 동아시아사 4번 문제에 대한 간단한 고찰 2
안녕하세요. 요 며칠 새 동아시아사 개념서 관련하여 게시글을 썼던 강사...
-
시내 갈 때 버스에서 노래 들어야 되는데
-
군삼반수 하려고 준비 중 1종 소형견인 (준비중) 가산점 12점 공군 일반병 너무...
-
생산적인 이야기를 하고싶어요
-
ㄹㅇ인 것이에요
-
코트마췃땅 0
그레이코트깨시민어100프로
-
최근검색어 삭제했는데도 그 계정에 있는 한 알파벳만 쳐도 연관검색어에 그 계정이 튀어나오네 ㄷㄷ
-
어라? 솔직히 사람들이 힘들어서 그렇지 배타는 건 너무 좋은데 걍 사관학교 하나 보고 달릴까?
-
이제 내가 성평에 서겠다
-
언급을 본 적이 없네
-
경평 ㅋㅋ 2
ㄹㅇ 충격적
-
인서울 상위권이라 하면 13
보통 어디를 말함?
-
잘몰라서 알려주세요 ㅠㅠ
-
저도 재수하면서 질문 받는 고인물 코스프레 해보고 싶음
-
2, 3단원 그냥 증발함 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 그와중에 6단원도 증발하는중임 ㅆㅂ
-
메가스터디 0
단과 강좌 없어졌나요? 7일 수강권만 뜨는데..
-
얼른 1지망으로 가버려라 흡
-
머리 좋다가 대부분 의대로 귀결되네...
-
좆드릴 3
뚫기
-
안경의 장점 27
0. 갓경임 1. 폰이 얼굴로 떨어질때 눈을 보호해줌 제가 방금 경험했어요
-
자기 잇속 챙기는 일에는 대통령 거부권 “해줘“ 전공의 처단 포고령에는 “몰?루?“ GOAT
-
현명하다 부럽다 말고 말 그대로 머리좋다 기준 전 갠적으로 영재교졸/과고조졸 후...
-
중대 심리 진학사 등수 낮았는데 앞 사람이 더 높은 학교 문과나 중대 경영 같은...
-
올오카 안하고 테이리부터 하려하는데 그동안 할만한가요?
-
연대 발표 하루쯤 전이겠다 싶으면 열어볼래요 너무힘들다
-
고사양 게임 즐겨하는편이라 게이밍 노트북으로 사려하는데 대학교 과제나 활동할때...
-
26 수능 목표 11
화통정생으로 고의 쟁취하기 만점이면 될 수도 있잖아
-
합격증이랑 수능 성적표만 가지고는 ㅂㄱㄴ할라나
-
전역 언제 하냐.. 11
-
인증 없으면 구라라니깐뇨
-
볼캡 사려고 하는데 몇개가 적당할까 한개는 있구 2개 살지 3개 살지가 고민임요
-
재수하면서 걸어둔 학교로 돈벌기 ㅎㅎ
-
수성 트럼프 월드 살면ㅅㅌㅊ인거임뇨?
-
행복하길 바래 9
에서 바래는 틀린 표현이며 바라가 와야 표현이 맞습니다 네 밥 묵으러 갑니다 ㅎ.ㅎ
-
T1) 2025 LCK CUP에도 T1 ZONE에서 함께 응원해요! 1
출처) T1 Instagram @t1lol
-
수능은 미적인데 확통은 내신땜시 챙겨야함니다 수(하)에서 특히 경우의수나 순열조합은...
-
성적 몇 점대까지 뚫릴 거라고 보시나요? 생명과학부, 생명공학부, 화공생명공 진학사...
-
왕 0
시작
-
수능 만점 받기
-
23입시 때 05조졸러들은 꽤 봤는데 24입시 때 06조졸러는 아마도 못본거같고...
-
수학,영어 올해 해야하는것 탐구고정1-2후만들기
-
ㅈ됐다 0
또 아직 한끼도 안 먹었어
-
영어 인강 추천 1
영어 인강 추천 해주세요. 작년 기준 6평 3 9평 2 수능 3 입니다. 원래...
첫번째 댓글의 주인공이 되어보세요.