'장시인 N제' 수능 수학 문제집 배포합니다.
게시글 주소: https://i.orbi.kr/00063762948
안녕하세요! 수학 공통 과목에 대한 수능 대비를 위한 '장시인 N제'가 출간되었습니다. '장시인 N제'는 수능 수학의 출제된 부분부터 출제되지 않은 영역까지 모두를 포괄적으로 다루는 고퀄리티의 수학 문제집으로서, 수능을 준비하는 학생분들께 많은 도움을 줄 것입니다. 감사하게도 파급효과님께서 서평을 작성해 주셨습니다. 모킹버드에도 좋은 퀄리티의 문제들이 많으니 많이 이용해 주세요~
#문제집 구성
'장시인 N제'는 기본적으로 수능 공통 수학 전 영역을 커버하는 구성으로 되어 있습니다. 대부분의 고등학교 수학 교과 과정을 다루며, 각 영역별로 다양한 난이도의 문제들을 포함하고 있습니다. 개념에 따라 구분되어 있는 문제들은 학습 단계에 맞춰 순차적으로 난이도가 증가하는 형태로 배치되어, 효과적인 학습 과정에 맞춰진 구성이라 할 수 있습니다.
#난이도와 해설
'장시인 N제'는 난이도를 다양하게 조합하여 구성하였습니다. 기초 개념부터 응용 문제까지 포함되어 있어, 단계적으로 난이도를 높여가며 문제 풀이 능력을 향상시킬 수 있습니다. 또한, 모든 문제에는 상세한 해설이 오르비 장시인 페이지를 통해 함께 제공됩니다. 학습한 내용의 이해도를 높이는 데 도움이 되는 해설을 차례로 업로드할 계획입니다.
#모의고사로도 제공되는 N제들
'장시인 N제'는 모의고사 형식으로도 따로 구성되어 있습니다. 장시인 모의고사는 수능을 실전 위주로 대비하는 데에 큰 도움이 되고, 시험 상황에 익숙해지고 효과적인 대응 능력을 기를 수 있도록 도울 것입니다. 수능에 가까운 형식과 난이도의 문제들은 실제 시험 경험과 유사한 수준에서 학습할 수 있게 해줍니다. 해당 모의고사들은 해설과 마찬가지로 오르비를 통해 만나 보실 수 있습니다.
#문제 해결 전략 제시
'장시인 N제'는 단순히 문제를 푸는 데 그치지 않고, 문제 해결에 필요한 전략과 방법을 제시합니다. 전 문항 꼼꼼히 기재된 코멘트를 통해 문제를 더욱 효과적으로 풀이할 수 있는 논리적 사고력과 문제 해결 능력을 기를 수 있습니다.
#별도의 보충 자료 및 온라인 리소스
'장시인 N제'에는 문제집 외에도 보충 자료와 온라인 리소스가 함께 제공될 것입니다. 기존 문항들을 변형한 문항이나, 새로 등장하는 평가원 모의고사들을 반영하여 기존 문항에 대한 보충 자료를 업로드할 것입니다. 이를 통해 학습한 내용을 보다 심도 있게 학습하고 복습할 수 있으며, 언제 어디서나 편리한 학습이 가능할 것입니다.
'장시인 N제'는 수능 수학 대비에 필수적인 도구로서, 수학 영역에서 좋은 성적을 얻기 위한 모든 학생들을 위한 교재입니다. 꼼꼼한 구성과 풍부한 문제들을 통해 여러분의 수능 수학 실력 향상에 도움이 되기를 바랍니다.
서평
"안녕하세요. 파급효과입니다.
먼저, 수험생활 중임에도 문항 제작에 대한 열정으로 무료 N제를 배포하는 것에 경의를 표합니다.
오르비에서 여러 문항 제작자를 유심히 살펴보고 스카웃하는 입장으로서
장시인 님은 충분히 좋은 문항 제작자로 성장할 여지가 커서 관심을 갖게 되었습니다.
이번에 배포되는 '장시인 N제'의 주요 문항들에 대하여 평을 남기자면...
수1은 실전에서 마주치는 문제에 비해 다소 어렵고 수2는 많이 어렵습니다.
매운 맛이지만 문항들이 꽤 괜찮습니다.
아무쪼록 많이들 풀어주시고 솔직한 후기 남겨주세요.
무료 문항 제작들에게 큰 힘이 됩니다."
-파급효과-
***
"안녕하세요. 장시인입니다.
저희 장시인 N제는 새로운 시각을 향한 경험 공유를 추구하는 자체 N제입니다.
오르비에서 지금까지 다양한 문제들과 모의고사들을 올려 왔는데요.
짐작하시는 분들도 계시겠지만, 저 역시 수험생으로서 입시를 치르고 있는 입장입니다.
다만 복잡한 수험생활 중에도 틈틈이 문제를 만들면서 쉬는 것이 저의 낙이었고
그렇게 쌓인 문제들을 여러분이 좋아해 주셔서 업로드하게 되었습니다.
문제 만들면서 여러 곳에서 연락도 오고, 제의도 많이 받았는데요.
비록 수험생 신분이라 당장은 힘들다는 말씀 드렸지만, 파급효과님을 비롯해서 도와주신 분들께
정말 감사하다는 말씀 드립니다.
비록 부족한 것이 많고 앞으로 4개월 간의 활동은 수능 대비로 힘들겠지만,
길게 보며 발전하는 장시인이 되겠습니다.
감사합니다."
-장시인-
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1. 환자 진료보고 수술하고 일과 끝나고 나서도 회사에 남아 논문쓰고 자기가 스스로...
-
명문대 마지노선 0
Chatgpt 피셜 스카이까지라고 함.
-
파인만의물리학강의vol.1 이거 읽어볼만한가오...
-
(실시간) 이재명 따라다니면서 "거기를 찢지말아주세요" 외치는 아저씨 0
관저 앞에도 왔음 mbc 라이브 보는데 발성 개쩜
-
20번은 갠적으로 탈20번 느낌임 30번은 나눠서 분석하는게 생각보다 깔끔함...
-
[속보] 공수처·경찰, 대통령 관저 진입 시도… 몸싸움 발생 1
[속보] 공수처·경찰, 대통령 관저 진입 시도… 몸싸움 발생
-
그래서 여러분 지금 체포영장 발부되기라도 했나요 아니잖아요
-
대학병원 스탭만큼 대기업에서 일했으면 임원 달고도 남았겠다 병신들아
-
얼마나나오려나...
-
얼마 안된 생각이다
-
남들이 대학 졸업하고 회사들어가서 느끼는 상사스트레스를 학생때부터 느끼기 시작해서...
-
올해 보면 나이가 사반수고 응시는 세번째긴 한데 군대까지 껴서 오수까지 하는...
-
건국대 정시장학 0
정사 과1등으로 입학하면 장학금 같은거 있나요?
-
ㅇㅂㄱ 1
모닝 어싸 ㄱㄱ
-
연대 천컴이 0
2학년때 전공선택인데 컴공정원이 정해져있으면 1학년때 학점을 잘따야 가는건가요?
-
내가 미친거겟지...
-
뉴런 시냅스 1
예비 고3인데 뉴런 띰 개 끝날때마다 시냅스 띰1과씩 푸는 데 거의 다 틀림. 답지...
-
고2 모고 다 3떳어요 고1수학 중요하대서 가끔 고1 4점만 좀 풀어보려 하는데...
-
최애 설빙은? 7
난 딸기
-
삼수,군대,반수 6
일단 현역 때 52545였고 2025(재수)9모 때 생명 42점 지구 48(1번...
-
붙여줘라..! 애기도 많이 낳을게
-
본인 알바 계약을 오전부터 12시까지 했는데 내가 학원으로 첫출근 했음 계약한...
-
3년 전엔 다음 대선은 뉴섬이랑 디샌티스가 치르고 있지 않을까? 라고 생각하는게...
-
조사 들어간게 아니라 사장님 사업자 변경때문에 잠깐 막힌거라함 저도 메일로 보낸게...
-
1. 스마일 라식을 진행할 때/한 후 특히 주의해야 할 점이 있나요? 2. 일반...
-
Zanda 1
Yongzazal
-
씻은지 2일 된 줄 알악는데 생각해보니까 하루엿어요 다들 잘자용
-
탄핵소추 사유 1.줄곧 헌법과 법률을 위반하여 국법질서를 문란케 함 2.노무현...
-
잊력을 내영하세요.
-
I'll be back on next dawn orbi
-
현역 내신 3-4등급 공부를 한번도 해본적 없었는데 수능은 국숭세단 라인이었습니다...
-
표점만 다르면 반영방식이 어케되는거예요? 만약 25생윤처럼 불불불로나오면 만에하나...
-
ㄷㄷ
-
올해4점짜리만 5000문제정도풀면서 3년동안 4점짜리 10000문제가까이풀면서...
-
단순히 글의 의미와 주제를 파악하는것 뿐만 아니라 필자의 음흉한 의도를 파악하는데도...
-
야식먹기vs자기 12
-
사문 1순위인 데엔 이견이 없을 듯하고 그 다음은 뭐가 있을까요?
-
이번 생은 호모로맨스 에이섹슈얼 안드로진이라 힘들다
-
이수린씨 이름이 너무 이쁜걸 어떡해요,,
-
그동안 설대는 안 알아봤어서 감이 안 오는데 대략 어디쯤이다 식으로 라인만...
-
이과 누백 1퍼 0
수능 몇틀 정도인가요 아니면 국수탐탐 각각 백분위로 몇 정도
-
일어나라. 주변이 어두워 앞이 안 보이는 것 같아도, 5
아직 밤이 아니다.
-
20등 초반대 점수 궁금해요 (진학사로 다른 대학 점공 봐서 못 봤어요)
-
왜 언매러들이 화작러들보다 10퍼 이상씩은 높은거임 언매는 아무나 하는게 아니다 이건가
-
공부는 안하고 쓸 데 없이 빡갤 오르비 뒤져보며 강사 이름 하나하나 쳐보고 있네...
-
눈팅만 할때는 딥피드만 봤는데 이젠 모아보기가 제알 재밌네
-
반가워요 2
저는 시험(수능아님)공부중입니다...ㅠ
-
잘자요 10
대답안해주면 얼굴 무브링 넝당 ㅎ
감사합니다 ㅎㅎ
레벨별로 번호대 대충 알려주실 수 있나요?
레벨 1은 4점 초중반부 문제 + 단순계산
레벨 2는 11~15번에서 20~22번급 어려운 문제고요.
레벨 3은 22번 이상급 초고난도 문제
레벨 4는 N제니까 낼 수 있는 수준의 문제들입니다.
감삼다
일단 3까지만 풀어봐야겠네요
좋은 자료 감사합니다
+ 혹시 기존 모의고사 5회와 동일 문제 구성인가용
기존 모의고사 우수 문항 + 새로 선보이는 제작 문항 둘 다 있습니다!
장시인모의도 헬이던데…n제도..허수는 이만 물러갑니다
굿 :)
혹시 해설은 어떻게 보는 지 알려주실 수 있습니까....
해설은 이미 올라간 문항들도 있고 하나씩 차근차근 올릴 것이나 올해는 말씀드린 사정으로 다소 더딜 수도 있습니다. 다만 쪽지로 문항 번호 알려 주시면 문제별 손해설은 보내 드립니다.
감사합니다!!!