그동안 쓴 칼럼
게시글 주소: https://i.orbi.kr/00064989284
그동안 올린 게시글들입니다.
(새로 올라오면 또 업데이트합니다.)
제목 및 설명 쭉 보고 맘에 드시는 거 보거나, 본인이 약했던 파트 공부하는데에 이용하시면 되겠습니다.
제목 클릭하시면 해당 게시글로 넘어가요.
<함수감각(미적분)>
:합성함수와 그 미분을 인식하는 방식을 소개합니다.
(조회수 14000회)
:분수함수를 인식하는 유용한 도구을 소개한 뒤, 이를 일반적 함수에 대한 얘기로 확장하였습니다.
(조회수 14000회)
:위에 분수함수 칼럼 읽고 나서 풀어보세요
:함수 조작과 관련하여 중요하고 본질적인 내용을 다뤘습니다.
:지수함수의 재밌는 특성을 이용해 괜찮은 결론을 냈습니다. 꽤나 유용하게 사용할 겁니다.
:함수의 확대축소 감각을 지수함수를 이용해 소개한 가벼운 글입니다.
:도함수를 이용해 어색한 상황을 깔끔히 해석하는 방법을 소개하였습니다.
:함수 식을 보자마자 개형을 어느 정도 파악할 줄 알아야 합니다. 이에 대하여 두 편에 걸쳐 다뤘습니다.
:매개변수 관련 주의점을 아주 가볍게 다룬 칼럼입니다.
<지수로그>
(조회수 26000회)
:지수로그 개념을 다뤘습니다.
(조회수 22000회)
:지수로그의 대칭감각을 요구하는 문항입니다.
(조회수 14000회)
:지수로그의 평행이동 상황에서 흔히 하는 오해를 다룬 가벼운 글입니다.
(조회수 17000회)
:지수로그 함수를 이용하여 반감기에 대해 깊게 파고들었습니다.
<삼각함수>
(조회수 17000회)
:삼각함수 개념을 다뤘습니다.
:평행이동된 삼각함수를 인식하는 방법입니다.
:탄젠트의 각변환을 함수적 관점에서 바라봤습니다.
(조회수 12000회)
:계산 꿀팁입니다.
(조회수 15000회)
:삼각함수의 식조작, 대칭감각을 요구하는 문항입니다.
:삼각함수의 각변환과 관련된 문항입니다.
<다항함수>
(조회수 12000회)
:수학(상)에서 차용해온, 수2에 적용 가능한 근의 분리 대신에 사용할 수 있는 아이디어입니다.
:함수를 그리고 조작하는 한 가지 방법을 소개합니다.
(조회수 21000회)
:사차함수 공통접선을 빠르게 구하는 저만의 방법을 소개합니다.
(조회수 10000회)
:다항함수 식조작 관련입니다.
:함수를 방정식의 관점에서 바라보며 적절히 그림을 조작합니다.
:문제를 통해 유명한 극한 조건 두 개를 복습해보세요.
<적분>
(조회수 20000회)
:다항함수 적분공식 모두 정리해뒀습니다.
(조회수 10000회)
:치환적분을 인식하는 저만의 방법을 소개하였습니다.
(조회수 12000회)
:적분의 기하적 의미를 다뤘습니다.
(조회수 11000회)
:인테그랄 자체를 하나의 함수로 인식하고 푸는 관점을 소개합니다.
<무등비>
(조회수 10000회)
:무등비 문제를 좌표화하여 푸는 방법을 소개했습니다.
<그 외>
(조회수: 19000)
(조회수 15000회)
<수열>
:수열 파트는 다 초창기에 쓴거라 개인적으로 맘에 들진 않네요.
정 필요한 분만 보셔요.
(조회수 13000)
:그냥 이런 것도 있구나 신기하네 생각하고 넘기면 될듯요
(조회수 12000)
:등차수열의 합 Sn을 이차함수로 바라볼 수 있어야 합니다.
:등비수열의 1 기준 대칭성을 주제로 한 문제입니다.
도움을 드릴 수 있어서 늘 영광입니다.
감사합니다.
#무민
0 XDK (+2,400)
-
1,000
-
100
-
100
-
500
-
500
-
100
-
100
-
-500xdk 1
조의금내고옴 행복하시길
-
외국어 대학이라는 정체성이 있어서 그런지 비슷한 급간 대학 뱃지보다 약간 지적인...
-
가우스 n제 어떤가요??
-
제가 ㅇㅂ는 아닌데 11
어둠의 노사모임
-
이 버튼을 누르면 당신이 지원한,지원할 대학의 올해입시 마지막 합격발표날자로 곧바로 이동합니다
-
뭐 쓰지 0
..
-
나 왜 안 자1지 14
원래 딥슬립할 시간인데
-
당신은 2024년 10월 28일로 돌아가게됩니다 (시험답 기억x),로또같은거 기억x...
-
친구 사귀고 싶다 13
확실히 재수가 힘들긴 한가 봄 이 내가 친구 사귀고 싶다는 말을 하다니
-
미친흉기 더럽게 아프네
-
당신은 2023년 11월 28일로 가게됩니다
-
그렇게밤이되엇져 4
-
사실 여자좋아함 뻥임
-
그때의 나로 갈수있다면
-
불면증?걸렸는데 3
ㄷ잡생각이 너무 많아서 졸린데도 맨날 4-5시에 자고..하루에 2시간밖에못잠.. 잠...
-
시간떼우기 너무좋은데 문제는 영상이 몇개 없어서 하루만에 다 봐버렸다는 거임
-
롤모델이 노₩₩라서 ㅇㅇ
-
나는지금 6
뭐먹게
-
문제는 여건상 수능밖에 기회가 없다는 거임 수능에서 센츄를 따야 함 ㅠㅠ
-
수학황만 5
현우진 뉴런 수2 정적분 넓이 파트 인데요 제가 그린 함수 같은 상황에서는 점대칭...
-
식스센스 지구과학
-
대학 태그하거나 적음?
-
잘생겨지고 싶다 6
잘생겨지면 할 일 거울 속에 비친 내 모습 계속 보기 내 얼굴만 봐도 재밌을텐데 ㄹㅇ
-
얼버기 0
얼버기 기상
-
https://youtu.be/MgyhJ-F-IpM?si=vvUMxjLEbTS66mFe
-
공군컷말이되나 3
이사람들밥먹고자격증만준비했나
-
김범준쌤스타일이 0
어떤 스타일인가요? 약간 스킬적인 거 중요시하시나요
-
1. 파스칼의 정리원 위의 점 6개 있을 때 아래 G,H,I가 일직선 위에 있다....
-
ㅇㅈ특 1
내가할려고하면심장박동수280되서 못하겜ㅅㄹ음
-
수능때 운 하나도 없었으니까 원서질 운이라도 줬으면..
-
이해할수가없음 하 그년 대가리를 반으로 쪼갰어야 하는데
-
오늘 밥먹을때 씻을때 빼고 침대 밖에서 단 한 걸음도 안 나감...
-
1년 째 앵길 사람이 없어서 힘들었는데 1년 더 해야하네 친구들아 보고싶다ㅏㅏㅏㅏ
-
정말 착각일 수 있긴한데 수시로 톡와서 전화하자하고 나 과외끝날 시간 맞춰서...
-
내가 시중에 존재하는 기하 사교육의 결정체인데 가르쳐주고싶은 마음은 있는데 배울사람이없네
-
❅☃ 흑흑
-
올리면 학교 바로 특정이라서 못올리는게 슬프네요......
-
선착10명 5천덕 22
복권당첨기념
-
가짜 감동임 그냥 연말 가짜감동 쥐어짜기 레전드임 난 이제 더이상 속지 않아 캐롤 안들을거임
-
연애는 무슨, 2
여사친도없어서그렇습니다
-
반전기하학에선 원이랑 직선을 같은거로 봐요. 직선 = 반지름이 무한인 원인거죠 !! ㅎㅎ
-
대학 질문 4
백분위기준 언매 88 미적 98 영어 2 화학 98 지구 96 대부분 고대...
-
쪽지 환영.
-
흠..
-
바램8일차 0
무언가를 간절히 바라면 그게 이루어진대요 지구 2컷 37 8일차
-
혼전순결 말이 나와서 10
혼전동거는 어떰?? 궁금
-
귀가 작아졌나? 그럴리가 없잖아 ㅅㅂ 뭐냐 2년동안 문제 없었는데
-
내가 정말 잘해줄 수 있는데
-
저랑 삶에 대한 심도 있는 토론을 하실 분 구합니다 32
주제 던져주세요
감사합니다
저야말로 감사합니다 ㅎㅎ
정말 대단하십니다.
감사합니다 수학황이시어
감사합니다 일년간도움많이 받았습니다
사랑합니다
선생님 정말 감사했습니다.
정말 감사합니다 개념부분 파트별로 공부할때 꼭 보겠습니다!
이거 유튜브 좋아요처럼 나중에 찾아볼 수 있게 보는법 아시는분??
팔로우해둬서 빠르게 찾거나, 해당글 스크랩하기 눌러두시면 됩니다
복 받으실거에요,,! 감사합니다,,,,!
수능 파이팅하세요!!
올해 덕분에 도움 많이 받았어요!!
와 너무좋아요
하나만 물어봐도될까요?
지수함수나 로그함수가 대칭이동과 평행이동이 모두있을때(-log2(3x+7)+4같은..)이걸 그려서푸는게맞나요?대칭이동과 평행이동들 중에 어떤걸 먼저 순서로 옮겨야하는지도 모르겠고..난해합니다
형식적인 답변이지만 상황에 따라 다르긴 하죠
저게 방정식에 들어있는거면 그냥 수식적으로 봐야할 때도 있고,
그래프를 그려놓고 관찰해야 한다면 그려야겠지요.
근데 이 후자의 경우에 너무 부담 가지실 필요가 없습니다.
x, y 방향으로 정확히 얼마만큼이 이동했는지 알 필요 없어요
저 함수의 경우 그냥 대충 점근선은 x=-7/3이고, 감소하게끔 그려주면 되죠
잘 읽겠습니다! 감사합니다 ??
:)