2024학년도 수능 수학 소위 킬러문항 사례
게시글 주소: https://i.orbi.kr/00066454767
24수능 킬러문항 사례 (책참) 초본.pdf
2023년 6월 교육부 킬러문항 사례.pdf
잠도 안오고 집에도 가고싶고 해서
전문성은 없지만 그럴싸해보이는
문서 하나 작성해봤습니다.
지난 6월 교육부가 발표한
킬러문항 사례 문서 참고했습니다.
재밌게 봐주시고 반박 시 당신이 맞습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
김기현 아이디어 수1.2 현강 숙제가 얼마나 되나여
-
캬캬
-
이유가 뭐냐고오오오오오옷
-
"침대"
-
냥대 에너지공학과 되나요?
-
슈퍼소닉 전에도?
-
미적분에 도움되려나
-
그분도 최저만 맞추면 꿈의대학 가는거였잖아 그게 나잖아요 ㅠㅠㅠ 최저맞추려고 무한 N수중..
-
며칠전까진 할게 좃도없어서 심심했는데 운동도 해야하고 영화도 봐야하고 책도...
-
현 고2이고 대학 합격한 것도 아니지만 질문해봅니다 현재 공대 희망하고 있는데,...
-
중3 겨울방학 때 가족들이랑 해외여행갔는데 거기서 뭐 연령제한? 확인받는게 있었음...
-
40대 이전 변호사들은 로스쿨 출신 변호사로 보는게 맞나요?
-
나는과연 호감인가 10
-
카르텔 ㄷㄷ
-
중독돼버렷
-
인싸 모자 안에서 머리카락으로 조종하면 사실상 내가 인싸인거임뇨 노벨상은 확정인 거임뇨
-
미친척하고 숙대 3
영어 2인데 상향으로 미친척하고 숙대 넣기도 무리일까요…
-
미적 76 2컷 4
공통 5개 틀리고 미적 1개 틀린 76인데 2컷 안될까요?
-
못참고 사버렸다 2
2029 수능...봐야겠지?
-
영어 조교 0
교재 검토 같은 일을 하는 조교는 보통 언제 뽑나요? 영어로 유명한 팀은 어디가 있을까요?
-
올리버 색스 6
대단하심.. 제가 신경과/신경외과에 관심을 가지게 된 계기이기도 한 분 나중에 저서...
-
미적이랑 지구 1컷에 대한 얘기가 많은데 뭐가 더 현실성이 없는지 개인적인 의견...
-
화미물지 97 84 44 41 (원점수) 영어는 4등급입니다. 추합가능할까요?
-
생1 지1이랑 각각 비교해서
-
평일에 잠을 충분히(6시간)잤음에도 불구하고 진짜 빡시게 공부한 날에는 너무...
-
와 이 돈주고 아이스크림을 먹는다고? 아이스크림 맛도 일반 요거트 아이스크림이랑 별...
-
학교에서 배우는 윤사는 그럭저럭 할만한데 생윤은 얼마나 어려움? 더 자세하고 지엽적인가..?
-
백건아 인스타에 1컷 46으로 예상하던데 46으로 떨어질 확률 있을까요??
-
훠훠..안 나오면 자살할궙니다..쩝쩝
-
뇨씨들 처단한다 9
오타아님요
-
현역때 본 지문을 3번 이상은 푸는
-
키작남의 삶은 서글프뇨..
-
보통 몇 지문 읽나요?
-
심지어 88에서 갈리는게 주류의견인듯뇨
-
다군에 쓸게없음 3
7칸 아니면 3칸임 ..
-
휴가 짤린뻔했네요
-
대학을굳이가고싶지가않아져요 그냥평생을집에서살고싶어요
-
구글에 이름만 쳤는데 클리앙 디씨 펨코를 불문하고 게시글이 나오는걸까.. 심지어...
-
22 브레턴우즈 해겔 카메라 23 게딱지 24 너는잊는것이병이라생각하느냐 갑순할매...
-
갑자기 돌아보게됨 나만 그러냐
-
숙려제 쓸려면 보통 몇일 정도 절차를 밟고 쉴 수 있나요?
-
배고프지배고프지배고프지배고프지
-
[속보]홍천 산악지대서 훈련 중 굴러떨어진 20세 육군 일병 사망 4
강원 홍천 산악지대에서 육군 일병이 훈련 중 경사에서 굴러떨어져 숨지는 사고가...
-
흠
-
시대인재 갤러리에 투과목 만표 가지고 이야기한 적 없습니다.
-
모밴을 당합니다
-
본인 생윤 보통 2정도 나오는데 이번 수능에서 34점받고 망함 국어에서도 법지문...
-
밥량줄이고저녁샐러드 매일운동 버스보다는걷기 엘베보다는계단 실천중임뇨
-
내일도 과연 할 수 있을지 의문이다 근데 인스타에도 박제해놔서 안 할 수가 없노 인생 망했노
-
텔레그노시스는 사둔 상태인데 실채점 성적표 나오면 그떄부터 그냥 하루에 1-2시간씩...
솔직히 241122는 역대 22번 중 제일 joat라고 생각
개인적인 선호도가 낮다는 뜻? 어렵다는 뜻? 공부할 가치가 없다는 뜻?
문제 자체가 별로임
더럽다고 해야하나
저는 190630(나) 문항 (나) 조건 느낌 오랜만에 받아 좋았는데 네모 박스 조건부터 해석하고 주어진 미분계수 조건 2개 적용하려면 f(x) 개형을 수십개를 그려봐야 상황 파악이 가능하다 느꼈습니다, 220622처럼 위에서부터 순서대로 정보 처리해도 정답 상황을 충분히 경우의 수 분류해낼 수 있도록 출제했어도 좋지 않았을까 하는 개인적인 감상
f(x) 개형 찾고 조건 충족 확인 -> 틀리면 반복
이 과정이 너무 많이 필요했어서 현장에서 멘탈 갈리기만 좋은 문제였던 거 같아여 별 의미가 있는 거 같지도 않고
실제로 경우의 수 5-6개 하다가 안 돼서 제가 그랬고...
저는 현장 응시는 못했지만 개형 한 10개 그려봐도 도대체가 조건을 언제 만족하는지 모르겠길래 한 달 가까이 방치해뒀었네요 ㅜㅜ 미분계수 조건부터 바라보아 -1/4, 1/4라는 수의 특수성에서 ..., -1, 0, 1, ...의 특수함을 발견하는 것이 아니면 현장에서 답 내기 현실적으로 어려웠다 생각합니다
오히려 역대 22 중 가장 수능의 정의에 가까운 문제 아니었나 싶은데요
조건이 쓸데없이 더러운 것도 아니고 추론도 많이 요구하고
헉
팩트)
미적29처럼 미지수가 4개인 연립일차방정식은 교육과정에서 다루지 않음
애초에 3개인 것도 안다룸 ㅋㅋ
킬러문항의 기준은 A이다 --> 왜 대통령실 말과 다른가?
킬러문항의 기준은 B이다 --> 24수능에도 존재하지 않는가?
비슷하게
위급 상황이었다 --> 왜 부산대 병원에서 수술을 받지 않았나?
위급 상황이 아니었다 --> 왜 응급 헬기를 탔나?
'마포꽃섬'으로 알고 있습니다! 서울시 마포구에서였나 서울시에서였나 제작했던 것 다운받은 거로 기억해요
검색해 보았는데, 극좌표계에서 영역 구할 때 넓이를 구할 수 있다고 하는데
그러면 이걸로 확률밀도함수를 적분하는건가요?
(진짜 모름)
우리가 보통 사용하는 직교 좌표계, 데카르트 좌표계에서의 적분을 극 좌표계에서의 적분으로 바꾸는 방법이고 상황에 따라 계산을 더 쉽게 혹은 가능하게 할 수 있습니다.
직교 좌표에서 (x, y)로 나타내어지는 점은 극 좌표에서 (r*cos@, r*sin@)로 나타내어집니다. r은 직교 좌표 상에서의 주어진 점과 원점 사이의 거리이고 @는 원점과 x좌표가 양수인 x축 위의 점을 이은 선분으로부터 시계 반대 방향으로 잰 원점과 점 (x, y) 을 이은 선분까지의 각의 크기입니다. (표현이 정확할지 모르겠는데 수학1에서 일반각 정의하는 그 느낌)
이를 이용해 다음과 같은 연산이 가능합니다!