나머지 정리, 인수 정리
게시글 주소: https://i.orbi.kr/00066526636
다항식 f(x), g(x), h(x), i(x)가 있습니다.
f(x)를 g(x)로 나누었을 때 몫이 h(x)이고 나머지가 i(x)이면
위가 성립합니다. 이때 (한글 표현 헷갈려서 영어로 작성하면)
f(x)를 the dividend
g(x)를 the divisor
h(x)를 a quotient
i(x)를 a remainder
이라고 합니다. 참고로 저 deg는 degree에서 온 표현으로
괄호 안 다항식의 차수를 뜻합니다.
즉, 나머지에 해당하는 i(x)의 차수는
divisor에 해당하는 g(x)의 차수보다 항상 낮다는 것이죠!
혹은 i(x)=0이거나요 (별 의미 없어 보이지만 생각보다 의미 있음,
참고로 1, 2, 3과 같은 상수는 0차식이지만 0은 차수가 존재하지 않음)
예를 들어 삼차식 x^3-2x^2-5x+3을 일차식 x+2으로 나누면
나머지에 해당하는 R(x)는 상수항이 됩니다.
같은 삼차식을 이차식 x^2+3x+2로 나누면
나머지에 해당하는 R_2(x)는 일차식 혹은 상수항이 됩니다.
f(x)를 g(x)로 나누는 상황 중 나머지에 해당하는 i(x)가 0인 경우가 있는데
이때 "다항식 f(x)는 다항식 g(x)로 나누어 떨어진다"라고 이야기 합니다.
쉽게 말해
f(x)를 g(x)로 나누어 h(x)가 몫이고 i(x)가 나머지일 때
다항식 f(x)-i(x)는 항상 g(x)로 나누어 떨어지겠죠!
이제 예제를 하나 풀어봅시다,
다항식 (P(x))^2이 x^2-x+1로 나누어 떨어질 때
다항식 P(x)를 x^2-x+1로 나눈 나머지를 구하는 문제입니다.
출처는 쎈 고등 수학(상) 1판6쇄 I-02 C단계 243번입니다.
일단 (P(x))^2를 x^2-x+1로 나눈 상황과
P(x)를 x^2-x+1로 나눈 상황을 조건에 주었으니
나머지 정리에 따라 식을 작성해봤습니다.
해볼 수 있는 것이 없으니 후자의 양변을 제곱해
전자의 좌변을 얻고자 해보았고
식을 정리해보니 다음과 같았습니다.
이때 R(x)=0 or R(x)=px+q (p, q는 상수) 입니다.
왜냐하면 the divisor가 2차식이었기 때문에
a remainder는 1차 이하의 다항식 혹은 0이기 때문입니다.
그런데 R(x)=px+q이면
가 됩니다. (P(x))^2가 x^2-x+1로 나누어 떨어지므로
(px+q)^2도 x^2-x+1로 나누어 떨어져야 합니다.
다시 말해 x^2-x+1를 인수로 가져야 합니다.
그렇지 않으면 나머지가 발생하게 됩니다.
그런데 p가 0이 아닐 때 (px+q)^2는 이차식입니다.
p=0이면 좌변이 q^2이 되어 우변에서 Q_4(x)=0이어야
상황이 성립합니다. 따라서 Q_4(x)가 상수여야
양변의 차수가 일치하게 됩니다.
그런데 k(x^2-x+1)는 완전제곱식이 될 수 없습니다.
판별식 적용해보시면 D<0이므로 이차함수의 그래프가
x축에 닿지 않는 상황이기 때문입니다.
따라서 모순이 발생합니다, 좌변의 (px+q)^2는
x=-q/p일 때 0이 되기 때문입니다.
따라서 p가 0이 아니라는 가정은 잘못 되었고
p=0이므로 그에 따라 q^2=0, q=0이 됩니다.
따라서 정답은 0이 됩니다.
p.s. 조립제법 여태 조립제+법으로 알고 있었는데
조립+제법이 맞고 Synthetic division으로 불리는 것이었던 ㅋㅋㅋㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2026 수능 0
뿌시고 올 team 04는 ㄱㅊ!
-
ㅈㄱㄴ
-
실채 나오고 텔그나 진학사 변경되는데 몇 일 걸리나요?
-
아니시발 3
그아아ㅏ악
-
볼륨도 개크고 어느정도 개념 있는 상태에서 들어야하나? 난 2배속으로 들었는데 정말...
-
ㅇㅈ 22
꼴에 장발하는 개찐따옯붕이다 됐음??
-
팥붕보다 슈붕임 4
진짜 오늘 두개 먹으면서 한번 더 느꼈다
-
올해 국잘수잘탐망이 많아서 표본에 비해 갈수있는 대학이 널널해져가지고 내가 가능한...
-
ㅇㅈ 1
-
19번까지 풀어서 16개 맞았고 그러니까 13,14,15 틀렸어요 13번 어느...
-
미소녀로 다시 태어나 있을 테니까!!!
-
https://www.mycsat.re.kr/report/index.do...
-
크리스마스 7
다가와도 아무느낌도 없구나 외로움을 못느낄정도로 감정이 무뎌졌나
-
못참고 샀는데 제가 대충 경외시건 라인인데 궁금해서 스나용으로 성한중 라인대 확률...
-
돌아보면 제 개념에 빵꾸가 왕창 나 있었던... 변명 못 하겠네요 이렇게 된 이상...
-
2-3등급 학생들에게 독인 시험이 아녔나요? 준킬러 없이 극단적으로 나뉘니까..
-
중앙대 경영 1% 외대 경영 8% 외대 Language&AI 41% 홍대 A학과...
-
작년기준 컷 1
작수보다 이번 수능이 만표가 낮은것 같은데 그러면 컷 자체도 떨어진다고 봐야하나요?
-
지원 조건에서 없어진건 알고있고 표점 생각했을 때 투과목이 필수인 건가요??
-
유저 차단 어케함요? 12
ㅈㄱㄴ 아무리찾아봐도없던뎅
-
미적 14 15 20 21 27 28 다 맞추고 22 29 30 틀리면 '1컷'...
-
술 마시는 것도 아니고 게임 하는 것도 아니고 걍 붕어빵 열 마리 사다가 나눠먹고...
-
거기까지 가서 한국어는 별로 듣고싶지 않은데..
-
안 그래도 애매함데 남중남고군대남초과라서 ㅈㄴ까이는 듯 근데 또 애인은 내 얼굴 좋아하고
-
도움! 1
대학교메일 받으려면 따로 신청해야되는건가요? 메일있어야 엑셀 된다길래
-
공부일기 1장 5
D-349 오늘 공부한 과목:수학,영어 -수학 시발점 수학2...
-
진짜 다군 고려대조차 떨어질수도 ㅋㅋ
-
오히려 그런짓 하는거 보고 지겨워서라도 그만 하라고 비판하지 근데 페미에 대해 잘...
-
경외시 낮과(문과) vs 과기대 itm이면 어디가는게 맞을까요 4
학교 네임벨류나 주변 인식 등을 생각하면 전자인데 또 과를 보면 후자라서.....
-
네.
-
순살치킨이나닭강정마렵네 13
누가사들고집으로좀와다오
-
입학전 벌써 걱정되네요 여적여
-
자연과학대랑 문제 똑같은거 아닌가요?? 모의논술만 봐도 자연과학대/의학과 이렇게...
-
한국 코노엔 없는 노래가 너무 많음… 레오가 부르고 싶다!!
-
48이 92 47이 백분위 88인데 3등급이라 하길래 뭔소린가 했는데 누가 글...
-
네.
-
단기간에 긴급하게 해결할 업무가 생겨서 지금까지 일하고 주말도 일할 예정이라 한동안...
-
[칼럼]25수능 법지문-2014기출재탕입니다. pdf첨부 4
어줍잖은글로 다시 업로드합니다^^ 예비고3들이 볼거라고 생각되어, 중요한 컬럼...
-
일어나서부터잘때까지 오르비하기
-
고려대 컴공정도로 생각하면 되나요? 아니면 약대급으로 형성될까요
-
수능선택은 아니고 내신하는김에 보려구 합니다... 한완수 기하는 어떤가요? 방학때...
-
아빠한테 컨설팅비좀 빌려달라그랫더니 이것저것 물어보시고 걍 백오십마넌주심 둘다해....
-
다들 행복하세요 6
-
왜 곱미분을 그렇게. 하.
-
ㅈㄱㄴ
-
님들 크리스마스 한달도 안남앗어요~~
Jo lipjiebup
조립제 법
막줄은 저도 몰랐네요 ㅋㅋ
진지하게 조립제라는 중국의 수학자가 만든 방법인 줄 알았는데 찾아보니 재밌자고 하는 이야기였고... 조립제법, 종합제법, synthetic division 등으로 불리며 Paolo Ruffini라는 수학자가 만들었다고 하네요
+ 1. 곱셈공식, 인수분해공식은 결국 한 등식을 어떠한 방향으로 해석하느냐의 차이입니다. 등식을 배우게 되면 한 쪽에서 다른 한 쪽으로 넘어가는 것을 쌍방향 모두 원활하도록 익혀두시면 좋겠습니다.
2. 나머지 정리, 인수 정리는 결국 본질적으로 하나입니다. 본문의 f(x)=g(x)h(x)+i(x)가 나머지 정리 항등식이고 f(x)-i(x)=g(x)h(x) 꼴이 인수 정리 항등식이라 생각해두시면 좋겠습니다.
3. 수학(상), 수학(하)를 고등학교 1학년 내신 대비 목적으로 공부하는 경우 빠른 문제 풀이를 위한 다양한 접근법을 익히게 됩니다. 그런데 그런 것들 단순 암기하면 재미도 없고 수학적 사고력 향상에도 별 도움 되지 않는다 느꼈습니다. 따라서 문제 하나 하나 처음 풀 때에는 5분 이상씩 고민해보시며 어떠한 접근법이 도움이 될지 홀로 고민해보시기 바랍니다. 처음에는 문제 푸는 데에 오래 걸려 재미 없겠지만 그렇게 홀로 고민하는 능력을 길러가면 결국 대학수학능력시험을 대비하는 시기가 왔을 때는 물론 인생을 살아가며 문제 상황을 접했을 때 더욱 강력한 힘으로 대응하실 수 있을 거예요!
+ 고등학교 1학년 때는 쎈 C단계에 있을 법한 문항들 공부하면 고민해도 고민해도 어떻게 접근해야할지 모르겠어서 그냥 답지 보며 "이걸 어떻게 떠올리나..." 하고 넘겼었는데
고등학교 2, 3학년을 거쳐 수능에서 100점 받고 돌아와 다시 살펴보니 충분히 어려운 문항들이었다는 생각이 드네요 ㅋㅋㅋㅋ 수능 공부할 때 같은 문제 몇 시간 동안, 며칠 내내 고민하며 풀어가던 경험이 쌓여 이제서야 5년 전의 제게 도움을 주는 듯합니다.
영다항식 차수를 정의안했었나
-inf로 정의하기도 했던거같은데
저도 어디서 음의 무한대로 정의한다 봤던 것 같은데 구글 검색해보니 no degree로 나오길래 우선 차수 정의하지 않는다 작성했습니다
조립제법 특) 사람이름아님 ㅋㅋ
Paolo Ruffini 법 ㅠㅠ