권오남 전 한국수학교육학회 회장의 11계명 (ft. 이차방정식)
게시글 주소: https://i.orbi.kr/00066665694
권오남 전 한국수학교육학회 회장의 11계명
1. 끊임없는 호기심으로 주변을 관찰하면
많은 사건 속에 수학이 보이고, 수학으로 그것을 해결할 수 있다.
2. 선택하거나 의사결정을 내리는 상황에 수학이 있다.
수학으로 배려하는 '의사결정의 가치'를 느껴보아라.
3. 주어진 문제를 해결하고 답을 구하는 것 못지않게 중요한 것은
새로운 문제를 제기하는 것이다. 스스로 문제를 만들어
해결하는 공부의 주인이 되어라.
4. 수학의 정의는 수학자들이 오랫동안 사고하고 합의한 결과이다.
혼자가 아닌 동료와 함께하는 수학의 힘을 느껴보아라.
5. 수학도 오래 보아야 예쁘고 사랑스럽다.
꽃에 꽃말을 붙이는 것처럼, 수학에도 관심을 갖고
의미를 붙여가면 수학을 더 친근하게 받아들일 수 있다.
6. 세상은 온통 데이터이다. 데이터를 정확하게 이해하고,
또 알기 쉽고 정직하게 표현하기 위해 수학이 꼭 필요하다.
7. 이야기의 힘! 스토리텔링으로 수학을 익히면
어려운 수학 개념과 그 관계들이 드라마의 줄거리처럼 이해된다.
8. 패턴 찾기와 패턴 만들기 학습은 관찰, 패턴 추측, 증명과 확인의 과정을 통해
우리 주변에 숨겨진 수학을 찾을 수 있다.
9. 개념들 사이의 관계를 이해함으로써
수학을 생각하는 다양한 관점에 대해 알게 된다.
10. 올바른 원리를 따라가다 보면
어느새 수학을 즐기는 자신을 발견하게 될 것이다.
11. 수학에도 '감수성'이라고 부를 만한 고유의 감각이 있다.
이러한 감수성을 통해 수학적 직관을 길러보아라.
중학교 때 다니던 수학 학원에서
선생님께 이런 말씀을 들었습니다.
"얼마 전에 친구를 만나 술을 마시는데
어쩌다가 이차방정식의 근의 공식 얘기가 나와
물어보니 잠시 고민하다간 그 자리에서
공식을 유도해내더라. 나이가 40이 넘었는데
이차방정식의 근의 공식을 유도해낼 수 있다는 것은
정말 엄청난 것이다."
이후로 저는 '이차방정식의 근의 공식을 유도해낼 수 있는 어른'으로
남고 싶은 마음에 고등학생이 된 후에도, 수능을 준비할 때에도,
그리고 대학생이 되어서도 종종 이차방정식의 근의 공식을 직접
유도해보곤 해왔습니다. 조금 웃긴 얘기일 수도 있죠 ㅋㅋㅋ
그런데 이차방정식의 근의 공식이라 함은 결국
모든 이차식을 A^2+B=0 꼴로 정리할 수 있음에
유도 과정의 핵심을 두고 있습니다.
저도 잘은 모르지만 삼차방정식의 근의 공식도
모든 삼차식을 특정꼴로 정리할 수 있음에
유도 과정의 핵심을 두고 있던 것으로 기억합니다.
이러한 과정의 핵심에 사고 과정의 무게를 두는 것이
"10. 올바른 원리를 따라가다 보면
어느새 수학을 즐기는 자신을 발견하게 될 것이다."라는
문장을 떠올리는 듯하여 언급해보았습니다.
쎈 공통수학1 04.이차방정식 C단계 542번 변형 문제입니다.
고민해보시고 아래 확인해보십시다!
a^n+b^n 꼴은 다음의 두 방식으로 얻는 것이 대표적이다.
a^3+b^3에 대해선 대표적인 곱셈공식을 적용할 수 있으니
두 번째 방식을 적용하여 a=1 확정
같은 꼴이 반복될 때는 치환해주면 좋다.
이때
이므로
첫 번째 항과 두 번째 항의 값으로부터
수열 a_n의 값들을 구할 수 있다.
관찰해보면 1, -1, -2, -1, 1, 2가 반복 된다.
따라서 음수인 항들은 2, 3, 4, 2+6, 3+6, 4+6, ... 번째 항들이고
이웃한 항 사이의 합이 0이 될 때는 n값이
1, 4, 1+6, 4+6, ... 일 때다.
두 상황의 교집합은 4, 4+6, ... 이므로
답은 4이다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
덕코복권 망했다 2
아무나 1등좀 뽑아봐요
-
얼버기 4
일어나보니까 저녁이네 ㅋㄲㅋㅋ
-
매복사랑니 0
3개 한 번에 뽑는 건 좀 무리인가
-
폰케왔다 3
내일유심만오면 나는새폰흐흐
-
그거 앎? 0
지우 피카츄 대머리임
-
캬 8
금삐까츄 캬
-
긍정적으로 마인드로 352일 공부하기 8일차 오늘의 소확행 : 어제는 사격 0발...
-
생1 유전 공부하다 파타우 증후군이 뭔지 검색해봤는데 1
충격적이네요.... 꿈에 나올까 무서워요ㅠ 오늘은 엄마랑 자야할거 같아요
-
사랑니 뺐는데 0
운이 좋았나봄 지금까지 온 치과 중에 젤 안 아팠음...
-
3월까지 깨작깨작하다가 3월부터 풀 악셀 밟으려는데 어떰 님들은 언제부터할예정?
-
리처드 파인만을 기억하세요 파인곳이 만, 튀어나온 곳이 곶입니다
-
비와서 산책 못가겠네 17
쭵쭵
-
지금 내가 전공공부를 하고 있지 않았을텐데 하지만 괜찮아
-
https://orbi.kr/0003380751
-
화장하는 남자? 3
이거 쉐딩하는 전용 맞나요??
-
김기현 아이디어 수1.2 현강 숙제가 얼마나 되나여
-
캬캬
-
이유가 뭐냐고오오오오오옷
-
"침대"
-
냥대 에너지공학과 되나요?
-
슈퍼소닉 전에도?
-
미적분에 도움되려나
-
그분도 최저만 맞추면 꿈의대학 가는거였잖아 그게 나잖아요 ㅠㅠㅠ 최저맞추려고 무한 N수중..
-
며칠전까진 할게 좃도없어서 심심했는데 운동도 해야하고 영화도 봐야하고 책도...
-
일부러 과행사도 동아리도 아무것도안들어갓는데 대형과가 아니라 쉽지않음 그냥 사람이랑 안엮이고싶은데
-
현 고2이고 대학 합격한 것도 아니지만 질문해봅니다 현재 공대 희망하고 있는데,...
-
중3 겨울방학 때 가족들이랑 해외여행갔는데 거기서 뭐 연령제한? 확인받는게 있었음...
-
40대 이전 변호사들은 로스쿨 출신 변호사로 보는게 맞나요?
-
오프닝 노래까지만듣고 그냥 잤음... 오늘은 꼭 1화 다 봐야지....
-
나는과연 호감인가 10
-
카르텔 ㄷㄷ
-
중독돼버렷
-
인싸 모자 안에서 머리카락으로 조종하면 사실상 내가 인싸인거임뇨 노벨상은 확정인 거임뇨
-
미친척하고 숙대 3
영어 2인데 상향으로 미친척하고 숙대 넣기도 무리일까요…
-
미적 76 2컷 4
공통 5개 틀리고 미적 1개 틀린 76인데 2컷 안될까요?
-
못참고 사버렸다 2
2029 수능...봐야겠지?
-
영어 조교 0
교재 검토 같은 일을 하는 조교는 보통 언제 뽑나요? 영어로 유명한 팀은 어디가 있을까요?
-
올리버 색스 6
대단하심.. 제가 신경과/신경외과에 관심을 가지게 된 계기이기도 한 분 나중에 저서...
-
미적이랑 지구 1컷에 대한 얘기가 많은데 뭐가 더 현실성이 없는지 개인적인 의견...
-
화미물지 97 84 44 41 (원점수) 영어는 4등급입니다. 추합가능할까요?
-
생1 지1이랑 각각 비교해서
-
평일에 잠을 충분히(6시간)잤음에도 불구하고 진짜 빡시게 공부한 날에는 너무...
-
와 이 돈주고 아이스크림을 먹는다고? 아이스크림 맛도 일반 요거트 아이스크림이랑 별...
-
학교에서 배우는 윤사는 그럭저럭 할만한데 생윤은 얼마나 어려움? 더 자세하고 지엽적인가..?
-
백건아 인스타에 1컷 46으로 예상하던데 46으로 떨어질 확률 있을까요??
-
훠훠..안 나오면 자살할궙니다..쩝쩝
-
뇨씨들 처단한다 9
오타아님요
-
현역때 본 지문을 3번 이상은 푸는
-
키작남의 삶은 서글프뇨..
-
보통 몇 지문 읽나요?
첫번째 댓글의 주인공이 되어보세요.