신기한 수학적 대상들 (ft. 프리드버그 선형대수학)
게시글 주소: https://i.orbi.kr/00067231862
1. 다항식의 나눗셈 정리 (division algorithm for polynomials)
자연수 n과 음이 아닌 정수 m이 있다.
n차 다항식 f(x)와 m차 다항식 g(x)에 대하여
다음을 만족하는 다항식 q(x)와 r(x)가 유일하게 존재한다.
이때 r(x)의 차수는 m보다 작다.
--> 이것을 통해 수학(상) (22개정부터는 공통수학1) 에서 다루는
다항식의 나눗셈 결과가 유일함을 확인할 수 있습니다.
수능까지 도달했다가 고1 과외를 위해 복습해보신 분들은
한 번쯤 '이 결과가 유일한가'라는 질문을 스스로에게
던져보지 않으셨을까 생각해봅니다. 저는 그랬습니다.
2. 다항식의 인수분해의 유일성
차수가 자연수인 임의의 다항식 f(x)에 대하여
다음을 만족하는 유일한 상수 c, 서로 다른 유일한
기약(irreducible, 차수가 자연수이고 어떤 체의 원소를 계수로 가지며,
자연수 차수를 가지는 다항식의 곱으로 표현되지 않는 성질) 모닉(monic,
최고차항의 계수가 1인 다항식. 일차식) 다항식
, 유일한 자연수
가 존재한다.
--> 이것을 통해 마찬가지로 다항식을 인수분해한 결과가
유일함을 확인하고 넘어갈 수 있습니다.
3. 복소수에 관한 이야기
- 복소평면은 우리가 일반적으로 사용하는 직교좌표계에서와 마찬가지로
두 축으로 구성된다. x축 자리에 실수축, y축 자리에 허수축이 위치하곤 한다.
따라서 어떤 복소수의 실수부, 허수부는 각각 복소평면에 대응되는 벡터의
종점의 x좌표, y좌표가 된다.
- 복소수는 복소평면의 벡터로 생각할 수 있다.
- 복소수의 덧셈은 벡터의 덧셈에 대응한다.
- 복소수의 곱셈 결과에 해당하는 벡터는 각 벡터(복소수)가
실수축의 양의 방향과 이루는 각의 크기를 모두 더한 크기의 각을 지닌다.
- 이외에 아래의 식을 확인하라!
이때 e^(i@)는 복소평면에서 크기가 1이고
실수축의 양의 방향과 이루는 각의 크기가 @인 벡터이다.
즉, 단위벡터이다.
따라서 모든 복소수를 다음과 같이 이해할 수 있다.
--> 고등학교 1학년 교육과정 밖의 내용이 조금 섞여있지만
이를 이해함으로써 복소수에 대한 보다 넓은 시야를 갖출 수 있습니다.
4. 대수학의 기본 정리
먼저 미적분학의 기본 정리(the fundamental theorem of calculus)는 다음과 같다.
FTC1:
FTC2:
비슷한 이름인 대수학의 기본 정리(the fundamental theorem of algebra)는
다음과 같다.
복소수체 C에 대한 벡터공간 P의 다항식
--> 이를 통해 복소수 범위에서 모든 다항식은
식의 값이 0이 되도록 하는 독립변수값이 존재함을 알 수 있습니다.
보통 고등학교 수학에서는 실수 범위에서 이야기를 이어가기에
차수가 홀수인 다항식은 사잇값 정리(the intermediate value theorem)를 통해
근의 존재성을 직관적으로 확인할 수 있는 데에서 그치지만,
대수학의 기본 정리를 확인함으로써 복소수 차원에서 다항식은
항상 해를 갖는다는 사실을 보다 명확히 인식할 수 있겠습니다.
5. 체, 벡터공간, 다항식에 대하여
먼저 체의 정의는 다음과 같습니다.
그리고 벡터공간의 정의는 다음과 같습니다.
이에 따른 다항식의 정의가 다음과 같습니다.
--> 이를 통해 수학(상)에서 다항식을 공부할 때
다항식의 무엇이냐라는 정의에 대한 질문에 보다
체계적으로 답할 수 있을 것이라 생각합니다.
이전에 위키백과에서 확인한 바로는
f(x)=0의 경우 차수를 정의하지 않거나 -무한대로 정의한다고
확인했던 기억이 있는데 프리드버그 선형대수학 교재에서는
-1차로 정의하고 있네요!
p.s. 수학을 공부하다 보면 A를 설명하기 위해 B가 필요한데
B를 설명하기 위해서는 A가 필요한 그러한 상황을
맞이할 수 있다고 느꼈습니다. 물론 배움이 부족하여 그렇게
느끼는 것일테지만 이러한 상황에서 수학적 대상이라는 표현이
도움이 될 수 있다는 생각이 들었습니다.
물론 수학적 대상이라는 것도 인간이 언어를 발명하고
수학과 대상이라는 단어의 의미를 정의한 후에
비로소 의미를 지니게 된 표현이겠지만...
인간은 내가 직접 감각하는 것들 외에는
어떠한 개념의 유래, 발생 과정 등에 대해
확신을 갖지 못할 때가 있지 않습니까?
어느 정도는 이해하지 못했다는 느낌을 안고 넘어가는 것도
학습을 이어가는 데에 도움이 될 수 있지 않을까 하는 생각을 해봅니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그만싸우셈뇨 7
뻥임뇨
-
ㅇㅇ 솔직히 안암 너무 구린거같음 누가 빌런이 필요하시대서 내가 빌런이 되려고여ㅎㅎ
-
10일 기다리느라 숨막혀 죽는줄 알았다
-
의대논쟁 알바노 3
응 어차피 못가 내알바아니야~
-
신기함
-
상명대 논술 3
2명 뽑는데 예비3번 가망없을까요 ㅠㅠ
-
서럽다씨발 0
집에 돈도없는데 이제
-
여름에 받아서 2급 나왔었는데, 그땐 시력이 안 좋을 때라 0.2 0.2...
-
예체능이고 국영한탐만 반영해요..! 만약 탐구 하나는 무조건 1 맞아야 한다면...
-
클스마스 한 달 남았는데 벌써 알고리즘에 캐롤 뜨네 1
아 랄로 연말정산 언제 올라와
-
재미를 북돋아줄 빌런을 내놔라
-
계획대로 덕코 줍줍 11
-
예비고3인데 윈터스쿨 아직 마감 안되었나요? 그리고 얼마인가요?
-
의대 2126학번 모집정지 가능성 있나요??
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 0
논리싫증주의자는 관심이 없다
-
꼴값 1
얼마지
-
허수 탈출 기원 영어는 할 예정
-
방 1개랑 방 안에 화장실만 따로 있으면 좋은데 주방이나 세탁실 이런거는 공용으로...
-
어떻게 볼 수 있나요?
-
군수생 달린다 1
사인을 미분하면 코사인이라니 신기하군요
-
그냥 좋아하는 과목 할거임 그게 최선인듯
-
1일1영화 재밌는거같음뇨
-
뭐먹지
-
아무것도 하기가 싫어요
-
고대어디든가고싶은데 쓴 과 폭발하면 ㄹㅇ 슬플거같음뇨
-
아배고팡 0
후엔
-
"나츠키 스바루"
-
예쁘다는 말 2
다들 여사친한테 서슴없이 자주 하는 편?
-
그리고 정형외과 아버지가 아들보고 의대가지 말라고 했던 이유
-
언미물2화2 98 96 2 45 40 설대식 표점으로는 진학사기준 416.9나오고...
-
홍대한바퀴 씹덕코스 돌음 문구점 > 올리브영 > 저녁> 원신카페> 굿즈샵탐방>...
-
오늘 걸음수 1
-
글 싹 지우고 닉변했네
-
표본분석으로 판단될거였으면 빵꾸가 안일어나겠죠? 어떻게 생각하시나여 정시영역...
-
물리 선택 후 6개월간 매번 4등급이 떠서 9월에 늦게 생윤으로 틀었고 결국...
-
이 성적인데 쓸수있는 인서울 농어촌 정시가 있을까요..? 아무곳이나 서울로 가고 싶습니다
-
꿈이없음뇨 6
막연하게 메디컬 이런 꿈도 없음 그냥 공부 못해서 문과 왔음 어쩌다보니 좀 잘해짐...
-
선서
-
50은 기본인가? 오르비에서 유명한 분들 컨설팅 얼마정도에 하나요
-
어차피 수동차 탈일없는데
-
JLPT질문 11
수능 일본어 30~35점 정도면 N3부터 할까요 N4부터할까요??
-
한의대를 목표로 하고 있습니다. 재수할 때 과탐을 하는데 좋을까요? 아님 사탐을...
-
샌드위치 정리 감성 (ft. 극단적 사고하기, 열린 사고) 1
h(x)를 정리해 봅시다. 그래프 그려보시면 대충 사다리꼴 하나가 나옵니다. a도...
-
아니면 그냥 2025 시발점 수1 들을까요..?
-
D-352 공부 6
-
벌수 있을까요?? 세금 때고요!! 알바 첨이라… 풀타임은 구하는곳이 없어서 힘들듯요
-
2026수능은 사탐런하는게 맞는 거겠죠? 04 삼수생이라 올해 유난히 난이도에 비해...
-
그거슨 전광판으로 본 카리나였던거시고..
-
3년 하고 만점 못받은 똥과목인데 엄..
-
전 7월부터 했는데 아직까지 차단의 중요성을 못 느꼈음
고딩때 벡터 배울 때 벡터의 연산을 합이랑 스칼라곱을 배우는데
이걸 일반화시켜서 합이랑 스칼라곱이 잘 작동하는 공간의 원소를 벡터
내적도 뒤에 보면 똑같이 일반화함
n-tuple에 대해 같은 순서에 해당하는 원소끼리 곱하여 모두 더한다 <-- n차원 벡터공간에서의 내적의 정의
field를 선대에서도 언급하고 가나요? 선대본지 오래돼서 가물가물
강의는 아직 들어보지 못해 잘 모르겠습니다, 본문에 활용한 교재의 경우 첫 단원에서 벡터 공간을 정의할 때 체를 언급하고 맨 뒷 부분 부록에 소개해두었더라고요!
잘 기억은 안나는데 프리드버그가 확실히 수학과에서 쓰기 좋다던데 세밀하네요... 선대군엔 있었던거같기도? 없었던거같기도. 제가 배울때 썼던 strang에는 없었던거같음.
먼 나라 이웃 나라