6月 기하 28,29,30 Solution
게시글 주소: https://i.orbi.kr/00068292944
공통 영역에서는 밀도높은 계산과 비교적 낯선 발문과 조건을 제시함으로 시간을 소요시켰던 시험지었습니다.
선택과목에선 조금 숨통이 트이나.. 싶었지만 28번, 29번, 30번 모두 미출제요소와 특이표현을 삽입하여 까다로웠습니다.
바로 문제를 보시겠습니다, *(현장에서 응시한 원본 그대로이기에, 가독성이 조금 떨어질 수 있는 점 양해 부탁드려요..! :D )
28. 벡터방정식의 해석, 이등변 삼각형의 발견
1. QA+QP=2QM 중점 벡터 이용하기
2. 내적이 0 -> 수직 조건의 등장
3. WLOG, 임의의 p점을 세팅, Q를 작도해봅니다. -> 직선 OM은 현 AP의 수직 이등분선 -> 이등변삼각형의 생성 틀
4. |PQ|=|AQ|의 최소를 구하면, A에서 제일 가까운 Qm(1,-2)일때 |AQ|가 최소가 되며, 이때 |PQ|도 최소가 됩니다.
5. 원 밖에서 그은 두 접선 -> 합동인 직각삼각형 제조기 -> AQ는 원에 접하고, 삼각형 OAQ=OPQ가 됩니다.
29. 이차곡선의 방정식, 이차곡선의 정의요소
30. 벡터방정식의 이해, 이차곡선의 정의요소
#29.
1. 절댓값 풀기, y^2=1+-x^2/a^2 이니, 식을 정리하면 그림과 같이 쌍곡선과 타원을 얻을 수 있습니다.
2. PC+PD=일정 (루트5) -> 이차곡선의 정의 [타원]을 연상합니다. -> a=루트5/2, c^2=a^2=-1에서 c=1/2임을 얻습니다.
3. c+1=3/2=쌍곡선의 초점과 일치함을 확인합니다 -> A, B는 쌍곡선의 두 초점이 됩니다.
4. 쌍곡선의 정의를 연상합니다, BQ=AQ+2+12가 됨을 이용해 삼각형의 둘레를 구합니다.
#30.
1. 쌍곡선에 대한 정보 제시 -> 함수식을 작성합니다.
2. PF<PF' 조건을 만족하는 P는 x>0부분의 절반 쌍곡선 위에 놓임을 이해합니다.
3. WLOG, 임의의 P를 세팅, 쌍곡선의 정의를 이용해 PF = l, PF' = l + 6으로 세팅합니다.
4. 벡터방정식 쪼개기 (|FP|+1)F'Q = 5QP 에서 좌변의 F'Q벡터 앞에 곱해진 부분은 상수이고 F'을 시점으로 하니, 우변도 F'을 시점으로 하는 벡터로 분해합니다. -> 정리하면 (l+6)F'Q = 5F'P이고, F'P의 크기가 l+6, F'Q는 F'P의 방향을 연속적으로 따라가는 크기가 5인 벡터가 됨을 알 수 있습니다.
5. Q의 자취를 구합니다, 양수인 쌍곡선의 점근선의 기울기가 4/3이니, F'Q의 기울기 m 이 -4/3<m<4/3이 되는 부분으로만 생성됩니다.
*(5번 과정은 실전에서는 스킵하는 편이 시간단축에 도움이 되지만, 엄밀하게 Q의 자취를 제한함으로 명확함을 더할 수 있습니다. )
6. AQ의 최대 길이를 구하기 위해, 원의 중심을 경유하면 AF'+F'Q=5+5로, 이때 AF'의 기울기가 3/4이므로, 최대가 되는 Q는 Q의 자취 안에 존재함을 추가로 확인할 수 있습니다.
총평으로 기하에서 묵직함을 준 28번은 객관식이자 4점의 시작이지만 28 29 30중 가장 까다로웠고 벡터의 작도를 도형적 성질과 연계해야 하는 추론 문항이었습니다.
비슷한 느낌의, 추론을 요구하는 23.11.29의 평면벡터문항이 떠오르는데, 이 문제 역시 (다)조건에서 도형적 성질을 작도하는것이 핵심이었습니다.
앞으로 평면벡터를 연산할때 확대 축소(실수배), 평행이동, 내분, 외분등 교과서에서 다루는 벡터의 성질을 넘어, 그 작도되는 벡터들이 이루는 도형과 그 도형의 특수성을 다시 벡터 조건으로 녹여내는 연습이 필요할 듯 합니다.
29번의 경우 이차곡선의 식을 제시하는 특이표현과, 텍스트로 풀어둔 문장에서 이차곡선의 정의요소를 연상하는것이 핵심이었던 추론 문항이었습니다.
30번의 경우 제작년부터 틈틈이 보이던 이차곡선 + 벡터 융합 유형으로, 어떻게 식을 조작하면 이차곡선의 정의요소를 녹일 수 있을지를 생각해가며 풀이를 전개하는 것이 핵심이었습니다.
오늘 하루 모두들 수고하셨어요 ;D
긴 글 읽어주셔서 정말 감사드려요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅎㅇ 필자는 고1 1학기 끝나자마자 자퇴하고 1달전에 수능 본 07년생임. 과탐을...
-
물리 생명 특징 0
물리 생명은 각각 어떤 스타일의 학생에게 잘 맞나요? 다른 과목과 비교를 해서도...
-
아파서 못 걷겠어요 내리면 집까지 엉거주춤하게 기어가야겠네
-
마 고만해라 1
ㅇ
-
이런 글 몇 번 봤는데 아직도 없다니...
-
동대 전전에서 시스템 반도체학과로 전과 할 생각인데 의미 없음?
-
의치한 갔다고 막 자기 성공했다고 올리는 릴스들 누구처럼 수학 76받고 갔다...
-
최현준님 좋아하는데 볼 때마다 궁금함
-
똥테는 뭔가 부조화란 말이지
-
해볼라 하는데 인증 했고 과탐 두개다 썼는데 왜 모든 합격가능성에 '제외(수탐)'...
-
옛날 고른햇살 그 감성이 안 나온다던데 … 용초수는 재개점 하고 한 번 갔었는데...
-
이번 미미미누 나온 사람이 언매 미적 영어 129 135 2 인데 내가 언매 미적...
-
문자보냈는데 답이 없네 걍 현우진들을까
-
안철수vs이재명 1
대선 대결한다면 누구?
-
진짜총아니고
-
송도 화계 아직도 파나요?
-
시간이 좀 어긋나서 23화작 97 24확통 96 24한지 48 인게 문제였음...
-
나도 좀 웃기네 5
인생 첫 바나나 우유 사준 사람이 몸살 감기 걸린 군대 동기 ㅋㅋ 삘리 묵고 나으래이..
-
저기서 식 세 개 모두 적분하기에는 넘 귀찮아서 다른 방법이 있나 싶었는데 답지도...
-
에구
-
아시발배고파 4
근데 귀찮아서 화장실도 못 가는중
-
행복 2
찜갈비 기다리는 중
-
필요하신 분들이 있길래.... 저도 옛날에 오르비에서 어떤 귀인분이 배포하신 거...
-
전과목 1-2진동이였는데 1이 많이 떠줘서 매일 감사하면서 사는중
-
확통vs기하 0
제 전글 투표 부탁드림뇨
-
이미 가입된 전화번호라고 뜨네 탈퇴 후 재가입이라그런가? 어카지
-
변표 발표 전의 점수로 합격예측사이트에서 예측했던 합격률과 발표 후의 점수로...
-
예비고3 시대 서바 정규반 공통 들으려고 하는데 선생님 고민중입니다.. 대전으로...
-
ㅈㄱㄴ
-
가입시켜놓는 사람도 있을까 문득 궁금해지는
-
월간조정식 0
고2 모의고사 영어 2등급 고정인데 이제 기출정식하려고 하는데 같이 월간조정식 해도...
-
48=47 97줘서 꿀아님 ㅜㅜㅜㅜㅜㅜ
-
진학사 4칸 0
9일부터 쭉 4칸이었고 200명정도 뽑는 대형과인데 써볼만해?
-
이젠. 저격으로도 친목질이냐 비겁한녀석들
-
물론 내 노력이 부족했지가 베이스지만... 화작 86점 3등급 영어 79점 3등급...
-
성적표 보면 제2외 2등급 넘는 사람 거의 없던데 왜 대체..? 감점 엄청 큰 거...
-
커뮤 다끊고 공부하면 잘될거같음 뭔가
-
재수고민…. 3
시대단과+관리형 독서실이 좋을까요 기숙재종이 좋을까요? 2월부터 하는게 좋을까요...
-
중금속과 경금속 0
중금속: 수은(80, Hg), 납(Pb), 카드뮴(Cd) 경금속: 알루미늄(13,...
-
공익질문 3
오늘부터 공익 신청기간이라는데 내년꺼 신청해버리면 내년에 가야하는거임뇨? . . .
-
왜 분위기가 요상해졌냐
-
기타는 댓글로
-
진짜 복쌍사한거?
-
오르비 복귀 5
하...저격먹어서 7분이나휴릅했네요
-
문과기준으로
-
경북대식 636.25면 (인문) 아무곳도 못가나요,.,,
-
수능이 사탐해라. 라고 협박해샤 내년은 사탐이 많이 늘지않을까싶은
Goat
와 그림 진짜 예쁘다
찾아와주셔서 감사드려요 :D
여름방학때 기하공부하고 제대로 한 번 읽어볼게요!
항상 좋은 글 감사합니다
저야말로 항상 따뜻한 말씀에 감사드려요 ㅎㅎ
스크랩 on
30번 진짜 풀이과정 다맞췄는데 답을6으로왜썼지 하ㅜㅜ
아 28 거의 다 풀었는데 쩝
아니 센세 오늘 현장응시하셨나요
오랜만에 모교에 가니 선생님들 다시 보고 좋았네요 ㅎㅎ
샤이님도 정말 수고 많으셨어요 :D
따뜻한 말씀 감사드려요
알게 됐었는데 볼 때 마다 글을 잘 쓰시는 것 같아요 ㅎㅅㅎ
좋게 봐주셔서 감사해요 ㅎㅎ
더 분발하겠습니다!
반가워요!
응원 감사드려요 선생님 :D
연쌤또봄?
감이 날카로운데 안보면 아깝다는 생각도 드네요
물론 학교 생활도 충실히 할거랍니다
아 티에이??
앗! 오르비고닉 현우진보다 낫다!
머래
제 수학 풀이의 근간은 현역때 수강한 뉴*입니다 ㅎㅎ
기하 어려워서 표점 동점각인가 했는데 낮네요
그래도 이정도 표점차면.. 만족합니다
찾아와주셔서 감사드려요 :)
답은 역시 기하
기벡고수 치사토 찬양하기
기 벡...?
기하컨텐츠는 사랑입니다..
고마워요 :)
28번 첫 발상이 저한테는 어렵게 느껴졌네요 … Q가 동점이고 P도 동점이다보니 A랑 P를 엮어서 중간벡터로 생각할 생각도 못해보고 괜히 원의 중심으로 분해하려다가 꼬였어요 잘 배우고 갑니다!
저야말로 도움이 되었다니 기쁘네요 :)
저 28번 뒤지게 안보이다가 이등변 발견하고 그냥 밑변이랑 높이 일차식 세워서 좌표로 풂... 30은 식처리가 결국 안됨 ㅠㅠ
28번 이등변 발견한 후 내적 계산은 여러 방법으로 해도 괜찮아요! 오히려 수직 틀이 명확해 좌표가 더 빠를수도 있을 것 같네요 :)
30번은 저도 처음에 우변 F로정리했다가 꼬여서
지우고 F'으로 다시 시도했답니다.. (22.11.29 이후로 식조작을 못하면 접근을 못하는 벡터문제는 흔하지 않았는데 갑자기 들어오니 저도 까다로웠어요)
30번은 (a+6)F'Q=5F'P에서 F'Q=5, F'P=a+6을 생각을 못해가지고 식처리 어쩌라고? 하다 끝났네요
다음부터는 반드시 한방에 풀리실거에요.!
고마워요 태루님 :)
ㄹㅈㄷㄱㅁ
기하 원래 많아봐야 하나 틀리는데 이번에 28 30 틀렸네요
다행이 1 뜨긴 했지만 난이도가 상당해서 풀면서도 풀고 나서도 참 재밌었던거 같습니다.
오늘 신성규쌤 해설강의 들어보니까 순수 난이도는 미적<기하가 맞다네요
저도 30번 식조작, 28번 관찰에서 시간이 끌렸었네요..! 평가원 기출 중 22 이후 상당히 어려운 문제가 맞아요 :)
애초에 기하가 재밌어서 기하 선택한지라 어렵지만 너무 재밌었습니다
최근 들어서 이런 멋진 문제는 참 오랜만인거 같아요
흥미를 가지고 파는것만큼은 이길수 없죠 :D
항상 응원하겠습니다!
와 이분한테 기하 과외받고 싶다..