수학 좀 하시는분들 도와주세요
게시글 주소: https://i.orbi.kr/00068549467
6평 19번 위치.속도.가속도 함수 관련 처음으로 개념 정확하게 몰라서 틀린거같은데
일단 운동 방향이 바뀐다는게 속도함수의 함숫값이 0이면서 그때 t값의 좌우에서 속도함수의 부호변화까지 있는 경우니까
그 지점이 t>3일때 속도함수에서 t=3+4/k이고
저가 이때 위치함수를 x(t)라할때
x(3+4/k)=1이라고 하고 풀었는데 틀렸더라고요.
처음엔 그냥 단순히 실수한줄 알았는데 오답하면서 보니까 뭔가 알듯 말듯하는게 그냥 제대로 모르는거같은데 제가 정확히 어떤 개념을 잘못 이해한건지 모르겠어요.
어느 지점에서 사고 흐름이 잘못됐고 확실하게 구분하려면 어떤 문제 더 풀어보는게 좋을까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아오 취한다 0
취르비
-
"내년에도 화1 할래?"
-
1년 교재비,, 0
재수하면 보통 1년에 교재비 알마씩 쓰시나요? 재수하는거 죄송해서 12월에...
-
얘 맨날 애니프사 코스프레 하는데 막상 애니 하나도 안봄 최애의 아이도 안봤음 ㅇㅇ
-
상명대에서 재수했는데 수능 말아먹고 재입학 위기 그러나 중앙대 논술 합격
-
수능준비 할 때 인강으로 대충 수리논술도 준비해볼까하는데 안하는게 낫나? 기하확통...
-
역사의 뒤안길로 사라진 공간벡터 킬러 141129(B) 4
보기만 해도 참 풀기 귀찮게 생긴 비주얼 일단 주어진 식을 적절히 변형해서 풀기...
-
이걸로 친구랑 존나 싸움 투표좀요 ..
-
노력할수있는 재능 << 잘생긴재능 저게 그냥 대체불가 고트재능이라 생각함
-
논술로 붙은애들 생각보다 꽤 봄
-
그래서 수리논술로 대학 감 그 대학에서 안 붙여줬으면 최소 4수 이상 했을듯
-
최진우한탕 1
다섯글자에 환호성
-
밤이 되었습니다 12
애니프사들은 고개를 들어주세요 뭘 쳐다봐 미친새캬
-
원래 계획은 일요일에만 하는거였거덩요 근데 일주일에 한번씩하면 다 까먹는다고...
-
진짜 좀 어떻게보면 제가 잘못넘겨짚었다고 보일수도있는데 요즘 두분꺼 다 해보니까...
-
6칸 게이 5칸 안정 4칸 적정 3칸 소신 2칸이하 스나
-
어려서 꿈꾸었던 비행기 타고~
-
잘 사실까..
-
경희대 반도체공 전자공 6칸인데 경희대 경제 무역 경영도 6칸임 근데 경희대 무역...
-
의대합격보다 진지하게 어려운듯 국가유공자혈통도있어야되잖아
-
진짜 시작하면 중독돼서 하루에 8시간씩 박을거같은데
-
초성게임(끝) 33
ㅁㅎ 12시 10분까지 기회 무제한 상품:5천덕 힌트: 먹을 수 있는 거임 5천덕...
-
장투 따로 하고 시드 900 남기고 갖고 홀짝게임 중임요 따라하지마요 열차 출발 합니다~ 가즈아!!
-
김동욱 8
자러갈게요
-
김태완스시 1
아유 배고파
-
지금 현역이라고???? 나 두살 때 노래가 이렇게 좋다니
-
눈물의 삼수생 감격의 승리 ㅅㅅㅅㅅ
-
약 먹는 동안은 이 시간에 밥을 먹으면 안되겠어요...
-
예측확률 99%일때 min 값이 가장 보수적으로 본건가요?
-
지구10모까지 평백 98 -> 수능백분위 54… 지구 유지 or 생윤(또는...
-
체지방을 줄이는걸 동시에 하는건 불가능한가
-
걍 수1특강도 할 걸 그랬나
-
호떡 먹고 싶어요 10
여행가서 먹은 그 맛이 잊혀지지 않네요 주변에 호떡 파는 곳이 없어서 울엇어...
-
메시와 호날두라 할 수 있다.
-
다군에 동국대 열린전공(인문)은 추합 얼마나 돌까요...??.? 70명 뽑고...
-
이거 태블릿 지급이라고 돼 있는데 사양 괜찮은가요? 2주전에 13인치 스마트탭 샀는데 반입 안되죠?
-
동일 학교 높공 버리고 상경 썼는데 벌써부터 미친듯이 후회중임 살자마려운데 +1이 답임?
-
어저께 그 도시락 또 있었음 ㅋㅋㅋㅋ 그거 먹을까 오만번 고민하다 결국 햇반만 사왔네요
-
왜긴왜야 모고 볼때마다 화1 인원자수 갈려나가던데 ㅋㅋㅋ 분명첨에 3모칠때...
-
하나 못풀었을때 멘탈이 갈릴듯 96이 목표면 두개 못풀었을때 멘탈이 갈릴듯 92가...
-
쉬사준킬 4규 후 무슨 엔제를 푸는게 나을까요?? 그리고 쉬사준킬이랑 4규중에 뭐가 더 어렵나요?
-
본인 여사친 존예에 씹인싸에 공부잘하는 명문자사고생인디 신남연 팬임 ㅇㅇ 신은 공평함
-
I love you 11
baby I'm not a monster 넌 알잖아 예전 내 모습을~
-
걍 가슴쪽이 좀만 아파도 어제 그 병원에서 과잉진료한거같고 그럼 내 피같은...
-
제 레어 언제 와요....
적분상수 확인하셨나요?
속도함수가 t=3에서 연속이니까 위치함수 x(t)는
t=3에서 미분가능 이라고 판단하고 적분상수까지 맞추고 x(3+4/k)=1이라고 풀었는데도 틀렸더라고요
혹시 풀이과정 올려주실 수 있을까요
초기 위치만 주어져 있고 위치함수는 연속이기 때문에 위치함수로 푸시려면
[0,3] 구간의 위치함수를 구해서 x(3)을 구한 후에
[3,무한대) 구간의 위치함수를 구하고 연속이 되게 적분상수를 맞춰줘야합니다
어? 잠시만요
아 제가 시험지 봐보니까 계산 실수해서
틀린거같은데
속도함수가 t=3에서 연속
>>위치함수는 t=3에서미가
>>미분가능은 연속을 보장하니까 t=3 좌우로 적분상수 결정
>> t>3에서 위치함수 적분상수를 c라고하면
C=(9k+27)/2 나오고
x(3+4/k)=1 계산하면 k=16 나오는데 맞을까요??
네 그렇게 푸셔도 되고
다른 방법으로는 변위=속도함수의 정적분을 이용해서
인테그랄 0~3 v(t)dt+인테그랄 3~3+4/k v(t)dt를 구하면 x(3)-x(0)+{x(3+4/k)-x(3)}=x(3+4/k)
이렇게 풀어주셔도 되고
아니면 0~3정적분 구해보면 3/2 나오고
3~무한대는 일차함수라서 적분안하고 직각삼각형 넓이가 1/2이 되면 정적분 값이 -1/2 잖아요
직각삼각형 넓이가 1/2이다 이렇게 풀어주셔도 돼요
전 현장에서 이 방법으로 풀었어요
맞나요??
네네 개념은 정확히 알고계세요
혹시 위에 적분구간 나눠서 계산하는 방식으로
하려하면 괜히 뭔가 개념이 더 헷갈리던데 제가 푼 방식으로 풀이과정 밀고나가도 괜찮겠죠?