오리톢 [902596] · MS 2019 (수정됨) · 쪽지

2024-07-04 11:40:38
조회수 606

Shearing hyperbolic surfaces and bending pleated surfaces

게시글 주소: https://i.orbi.kr/00068618297

Definition (transverse cocycle). Closed oriented surface $S$에 대해서, geodesic lamination $\lambda$가 있고, $G$가 abelian group이라고 하자. $G$-valued transverse cocycle for $\lambda$는 $\lambda$에 transverse한 (unoriented) arc $k$에 대해서 $G$의 원소 $\alpha(k)\in G$를 associate 하는 것인데, $\alpha$는 additive하고 holonomy invariant 하는 성질을 만족해야한다. $\mathcal{H}(\lambda; G)$를 the group of $G$-valued transverse cocycle for $\lambda$를 뜻한다.


Rmk. 보통 $G = \Bbb R$ (transverse signed measure) 혹은 $=\Bbb R/2\pi\Bbb Z$ (bending measure) 인 경우를 생각한다. 만약 transverse cocycle의 값이 non-negative이라면 countably additive하다는 것을 보일 수 있고, 따라서 $\lambda$의 transverse measure를 정의한다. 따라서 transverse cocycle은 기존의 measured lamination의 transverse measure를 일반화한 개념이라고 볼 수 있다. Signed measure를 생각하는 이유는, "shear map" 을 다루기 위해서인데, 주어진 closed oriented surface에 두 가지의 hyperbolic metric $m_1,m_2$가 주어졌을 때, 어떤 lamination $\lambda$를 기준으로 왼쪽으로 각각의 $S-\lambda$의 component들을 twist해서 $m_1$ 에서 $m_2$로 바꿀 수 있다는 것을 보였음. 이 경우에는 얼만큼 twist를 했는지를 따라서 $\lambda$에 transverse measure를 줄 수 있는데, 핵심 이유 중 하나는 항상 "왼쪽"으로 twist를 하는 것을 요구하기 때문. 일반적으로 오른쪽으로 twist하는 것도 허용을 하면, transverse measure를 주지는 못하고 위에 transverse cocycle을 줌. 이렇게 왼쪽 혹은 오른쪽으로 어떤 geodesic lamination을 기준으로 twisting 혹은 shifting을 하는 것을 shear map 이라고 부름. 왼쪽으로 twist는 양수, 오른쪽은 음수로 기록을 함.


Definition (shearing cocycle).


Theorem A. For a fixed maximal geodesic lamination $\labmda$, the map $\mathcal{T}(S)\to\mathcal{H}(\lambda;\Bbb R)$ by $m\mapsto\sigma_m$ defines a real analytic homeomorphism from $\mathcal{T}(S)$ to an open convex cone $\mathcal{C}(\lambda)$ bounded by finitely many faces in $\mathcal{H}(\lambda;\Bbb R)$.


만약 $M$이 oriented hyperbolic 3-manifold이고 $f:S\to M$이 pleated surface with pleated locus $\lambda$ 라고 한다면, $f$의 local convexity에 의해서, 다시 말해서 $f$가 항상 같은 방향으로 굽어져 있기 때문에, 굽어져있는 정도가 $\lambda$에 transverse measure를 정의한다는 것을 증명할 수 있다. 따라서 각각의 pleated surface $f$에 대해서, $\Bbb R/2\pi\Bbb Z$-valued transverse cocycle $\beta_f$를 associate 할 수 있다.


Theorem C. For every geodesic lamination $\lambda$ of $S$, the map $f\mapsto (m_f,\beta_f)$ induces a homeomorphism from the space of all pleated surfaces with pleating locus $\lambda$ to the space $\mathcal{T}(S)\times\mathcal{H}(\lambda;\Bbb R/2\pi\Bbb Z)$. In addition, the space $\mathcal{H}(\lambda;\Bbb R/2\pi\Bbb Z)$ is homeomorphic to the union of 0 or 1 tori, whose number and dimension can be explicitly computed from $\lambda$.


Theorem D. The map $\rho\to\Gamma_{\rho}$ induces a biholomorphic homeomorphism from $\mathcal{R}(\lambda)$ to the open subset $\mathcal{C}(\lambda)\otimes i\mathcal{H}(\lambda;\Bbb R/2\pi\Bbb Z)$ of $\mathcal{H}(\lambda;\Bbb C/2\pi i\Bbb Z)$, where $\mathcal{C}(\lambda)\subset\mathcal{H}(\lambda;\Bbb R)$ is the open cone of Theorem A.











0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.


  • 첫번째 댓글의 주인공이 되어보세요.