허곡신거 [902596] · MS 2019 (수정됨) · 쪽지

2024-08-03 19:27:46
조회수 820

Chern-Simons invariant in hyperbolic 3-manifold

게시글 주소: https://i.orbi.kr/00068864906

Definition (Chern-Simons 3-form). Let $\pi:P\to M$ be a smooth principal $G$-bundle. Suppose we are given an $\mathrm{Ad}$-invariant symmetric bilinear form $\langle\cdot,\cdot\rangle:\mathcal{g}\times\mathcal{g}\to\Bbb C$. (i.e. $\langle\mathrm{Ad}_ga,\mathrm{Ad}_gb\rangle = \langle a,b\rangle$) The Chern-Simons 3-form $\alpha$ of a connection $\omega\in\Omega^1(P,\mathcal{g})$ is

$$\alpha(\omega) = \langle\omega\wedge\Omega\rangle - {1\over 6}\langle\omega\wedge[\omega\wedge\omega]\rangle = \langle\omega\wedge d\omega\rangle +{1\over 3}\langle\omega\wedge[\omega\wedge\omega]\rangle\in\Omega^3(P,\Bbb C).$$

In particular, if $M$ is a compact oriented smooth 3-manifold with or without boundary, and if there exists a smooth section $\sigma:M\to P$, the Chern-Simons invariant is

$$\mathrm{CS}_G(M,\omega,\sigma) = \int_M\sigma^*\alpha(\omega)\in\Bbb C.$$


물론 여기서 Chern-Simons 3-form의 각각의 항에 대한 설명이 필요하다. 보통 $\mathcal{g}$-valued form의 wedge product는 다음과 같이 정의한다: 만약 $\alpha = \alpha^iE_i$, $\beta = \beta^jE_j$, 여기서 $E_i$는 $\mathcal{g}$의 basis를 뜻한다. 그러면 각각의 $\alpha^i$와 $\beta^j$는 differential form들이고, 따라서 wedge product가 이미 정의가 되어 있다. 따라서,

$$[\alpha\wedge\beta] = \alpha^i\wedge\beta^j [E_i,E_j]$$

로 정의를 한다. 다시 말해서, coefficient들의 wedge sum을 하고 basis들의 Lie bracket을 이용해서 정의한다.

따라서, Chern-Simons 3-form에서 각 항들은 wedge product의 coefficient들에 주어진 bilinear form $\langle\cdot,\cdot\rangle$을 적용해서 정의하는 것이다.


만약 $G$가 Lie group이라고 한다면, $\langle\cdot,\cdot\rangle$은 $\Bbb R$-valued로 보통 다음을 사용한다:

$$\langle a,b\rangle = -{1\over 8\pi^2}\mathrm{tr}(ab).$$

예를 들어, oriented Riemannian manifold $M$이 있을 때, frame bundle $FM\to M$을 항상 associate할 수 있는데, 만약 $\nabla$가 Levi-Civita connection이라고 한다면, Chern-Simons 3-form of $\Delta$는

$$\alpha(\nabla) = -{1\over 8\pi^2}\mathrm{tr}(\omega\wedge\Omega - {1\over 3}\omega\wedge\omega\wedge\omega) \in\Omega^3(FM,\Bbb R)$$

가 된다. 참고로 위의 $\mathcal{g}$-valued form으로의 대응은 다음의 대응 관계로 다시 볼 수 있다:

$$\{\text{metric connection }\nabla\text{ on }TM\to M\}\leftrightarrow\{\text{principal }SO(n)-\text{connections }\omega\text{ on }FM\to M\}$$

* 참고로 Principal $G$-bundle에서의 connection 1-form은 원래 connection 1-form과 좀 다르게 정의하는데, 원래 connection 1-form은 local하게 밖에 정의가 되지 않는데, principal bundle의 경우에는 global하게 정의할 수 있다.

$\omega\in\Omega^1(P,g)$가 connection 1-form이라는 것은, (1) $\omega_p(\underline{X}_p) = X$ for any $X\in\mathcal{g}$ and $p\in P$, (2) $r_g^*\omega = \mathrm{Ad}_{g^{-1}}\omega$ 인 경우를 말한다. 여기서 $\underline{X}_p$는 소위 fundamental vector field라고 불리는 것인데,

$$\underline{X}_p = d/dt|_{t = 0} p\cdot e^{tX}\in T_pP$$

로 정의한다.

$\omega_p$는 canonical 한 choice가 있는데, 만약 $v:T_pP = V_p\oplus H_p\to V_p$가 vertical component로의 projection이라고 한다면, $V_p$는 $\mathcal{g}$와 $G\to P, g\mapsto p\cdot g$의 tangent map에 의해서 identify할 수 있고, 따라서 $\omega_p = v:T_pP\to\mathcal{g}$로 정의할 수 있다.

참고로 이러한 connection 1-form이 principal bundle에 정해져 있으면, 1-form의 kernel로 horizontal distribution을 잘 정의할 수 있다.


왜 이런식으로 Chern-Simons 3-form을 정의했는지 의문이 될 수 있는데, 한 가지 계산을 통해서 알 수 있는 것은

$d\alpha(\omega) = \langle\Omega\wedge\Omega\rangle$이 된다는 것. $\nabla$에 대해서는

$d\alpha(\nabla) = -{1\over 8\pi^2}\mathrm{tr}(\Omega\wedge\Omega)$가 된다. $[\mathrm{tr}(\Omega\wedge\Omega)]\in H^{4}(M)$가 Pontryagin class인 것을 상기해보면, Levi-Civita connection의 Chern-Simons 3-form은 Pontryagin class의 potential로 정의된다는 것을 알 수 있다. 일반적으로, 홀수 $p=2n-1$에 대해서 Chern-Simons $p$-form은 $[\mathrm{tr}(\Omega)^{2n}]\in H^{4n}(M)$의 potential, 다시 말해서 $d\alpha_{2n-1} = c_n\mathrm{tr}(\Omega\wedge\cdots\wedge\Omega)$인 $p$-form on $M$을 말한다. 여기서 $c_n$은 그냥 아무 constant나 잡아도 된다.


정의를 보면, Chern-Simons invariant는 global section에 depend가 된다. 우리는 적절히 mod를 해서 Chern-Simons invariant를 global section에 depend하지 않도록 하고 싶다. 이걸 위해서는 global section에 얼마나 CS-invariant가 변하는지 알아야 한다.

이러한 dependence를 반영하는 공식이 있는데, $\varphi:P\to P$를 smooth fiber bundle isomorphism이라고 하고 $g_{\varphi}:P\to G$를 $\varphi(p) = p\cdot g_{\varphi}(p)$로 정의하자. (앞에 나온 $p$에서의 fiber와 $G$와 identify를 하는 map이다.)


Proposition. Let $\varphi:P\to P$ be a bundle isomorphism. Let $g = g_{\varphi}\circ\sigma$.

$$\varphi^*\alpha(\omega) = \alpha(\omega) + d\langle\mathrm{Ad}_{g^{-1}_{\varphi}}\omega\wedge g^*_{\varphi}\mu\rangle - {1\over 6}g^*_{\varphi}\langle\mu\wedge[\mu\wedge\mu]\rangle.$$

In particular,

$$\mathrm{CS}_G(M,\varphi^*\omega,\sigma) = \mathrm{CS}_{G}(M,\omega,\varphi\circ\sigma) = \mathrm{CS}_G(M,\omega,\sigma)+\int_{\partial M}\langle\mathrm{Ad}_{g^{-1}}\omega\wedge g^*\mu\rangle - {1\over 6}\int_M g^*\langle\mu\wedge[\mu\wedge\mu]\rangle.$$


$G = SO(3)$인 경우에는, 가장 마지막 term은 $2\Bbb Z$라는 것이 알려져 있다. 따라서, $\bmod{\Bbb Z}$에서는 $\mathrm{CS}_{SO(3)}(M)$은 $\Bbb R/2\Bbb Z$에서 잘 정의 된다.








0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.