8덮 수학 22번 현장에서 맞은분 계심?
게시글 주소: https://i.orbi.kr/00068974896
눈대중으로 판단하다가 끄적끄적 11로쓰고 넘겼었는데 다시푸니까 겁나 골 때리는 문제네 이거
현장에서 풀고 맞으신분 22번 풀 때 생각의 흐름좀 알려주세요..,,
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
옆동네vs이동네 5
누가더고능함
-
진짜개잘하네 2
나만못하지
-
물론 나는 이미 많이 햇지만,,,
-
2024학년도 6월 모평 국어 (가), (나) 주제 복합지문을 풀다보니, 이해가...
-
럼블 그냥 AP 밸런스랑 적당히 균형만 맞추게 하려고 주는거 같은데 빈한테 이거 주는게 맞냐
-
럽코 추천받음 3
라노벨이랑 애니랑 만화 중에 볼만한 럽코 추천받음
-
가끔 딴생각 들구 페이스조절이 안되고 눈치보고 이런거 adhd같은거에요?
-
자르반이요????????????
-
오르비하다보면 은테는 달리던데 ㄹㅇ
-
진짜 재밌는문제들 많아요 푸는데 막 새록새록함
-
이게 근본이지 4
-
드릴4or설맞이 1
드릴4를 풀까요 아니면 설맞이를 풀까요
-
막전위, 근수축, 핵형분석, 세포매칭만 따로 문제 풀고싶은데 좋은 문제집 추천좀요...
-
혹시라도 내 지인이 내 ㅇㅈ글 봐버리면 어떡함? 그럼 내가 지금까지 오르비에 썼던...
-
저 포덕임
-
별 ㅈㄴ 많아
-
신이라 그런가
-
저는 안함.
"임의의 실수" 이거부터 어지럽던데
집모긴 하지만 적어볼게요
x1x2에 뭘 넣어도 저게 성립한다--> 아하! {f(x)의 모든 치역} >= {f(x)-g(x)의 모든 치역}이네... 즉, min f(x) >= max f(x)-g(x)구나!
f-g의 차수를 일단 알아야 하는데... f-g가 3차거나 1차라면 치역이 -inf~inf잖아? 그럼 f-g가 이차함수 혹은 상수겠구만~
그럼 당장 확실히 알 수 있는 건, f랑 g의 심차항 계수가 둘다 0이라는 거 정도...
근데 이제 할 수 있는 게 별로 없어 보이는데...지금 바로 미정계수를 박는 건 출제 의도가 아닌 것 같아. 아직 안쓴 게 하나 있네. g(1)을 띡 줬다는 건 이게 좀 특수한 경우라는 거겠지? 저게 ”부등식의 등호성립조건“일 확률이 높겠구만... 왤까!
일단... 당장 두 함수의 극대소를 구하는 건 힘들어 보이네. 좀 덜 엄밀하더라도 보편적인 얘기부터 시작해야겠다
->일단 적어도 f(x)>=f(x)-g(x)이긴 해야 하는 거니까, g(x)>=0이네! 이거였군. 따라서 g는 (x-1)^2를 인수로 가지는 게 확실하고.
되게 특이한 게, 아까 ”f(x)와 (f(x)-g(x)) 두 함수의 치역의 대소관계가 깔끔하다“(즉 서로 겹치는부분 x)는 걸 알았는데, x=1일 때는 딱 겹치네?
아!!! 그럼 x=1에서 f(x)가 최소이면서 동시에 g(x)가 최대이구나!
그럼 대충 f랑 g 생김새가 구해지고, g의 극대는 -6임이 확정되네~ f가 “최솟값”만 1에서 가져주면 되겠다! f가 “극솟값”을 1에서 가지는 건 확정이니까... 다른 극소보다 1에서의 극소가 더 작으려면...!
이이후로 미지수도입후 계산쭉쭉~했습니다
뭔가 상당히 부드러워보이는데 24분동안 고민하면서 대충 이런 흐름대로 나온 사고를 정리한 거에용 실제로는 중간에 엄청 턱턱 막히고 무지성 미지수 도입했다가 계산지옥열렸었음
세상에 마상에 감사합니다.. 정말 대단쓰..................
두번째 댓글 마지막 줄에서 g(x)가 최대가 아니라 f(x)-g(x)가 최대 맞지여??
네넹