[칼럼] 올해 평가원이 만지작거리고 있을 패
게시글 주소: https://i.orbi.kr/00069001994
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
“한국사로 변별” 0.5선택과목시절
-
시대북스에 안 보이눈데
-
잘하는과목이없음을깨달음 수학도삐끗하면1컷...이고 특히 한지가 비상이라 요즘 한지만...
-
수능 35212 1
문과로 광명상가 가능한가요 ??
-
동시에 막글 내일봐요
-
해외원조 롤스 2
절대빈곤을 해결하기 위해 노력하는 것이 인류의 보편적 의무이다 < 롤스가 동의하나요?
-
수학 노베입니다 11
지금 고2고 내년 수능 미적분 칠려고 수학 공부 시작했어요 진짜 수학 아는게 하나도...
-
후..
-
올해 푼 문제가 너무 많음.... 나오는데도 거기서 거기임 어부사시사는 역사적인...
-
휴릅기원 0
이제는 빌어야 그만하겠구나
-
킬캠 신기하네 0
푼거 네개틀림
-
굿모닝 프레지던트나 우리는 형제입니다 이거 나오는거 아님? (아님말고)
-
더이상 다닐맛이 안 나네.... 군대에서 머리 굴리 겸 해서 수능공부좀 하다가 9급 치러 가야겠다
-
생명가능지대 경계를 어떻게 잡나요? 지구랑 광도가 같으면 대략 1AU에서 생기지 않음?
-
엉엉
-
왜 갑자기 옥루몽이 그 자리를 차지했지..
-
기범모 시즌4는 0
내가 지금 푸는게 물리1이 맞나 생각듦ㅇㅇ
-
비교해주세요!! 문학 잘 못하고 독서를 더 잘해요 고2 학력평가 1~2등급 입니다...
-
고2 올라가는데 물생지 골랐어요 내신 수능 둘다 준비하려는데 과탐 인강에서 고3걸...
-
수특 3년주기 수록 (19수특/22수특/25수특) 작품성 또한 뛰어남 출제 가능성이 충분함
-
자꾸내가비참해짐
-
확실한 건 4
이번에 해리스가 "힐러리" 해서 떨어지고 소수자라 당했다 드립치면 좀 많이 추할 것 같음
-
홉스는 부정(국가성립 이후에 등장) 로크,루소 긍정 이거 맞죠..? 9모 이후로...
-
확률은 반반인데 평가원식 선지구조가 있어서 무지성 찍기보다 이거 활용하면 답 맞출...
-
'딥보이스'로 직장 성희롱 신고…음성위조 밝혀낸 지평 1
인공지능(AI)을 활용해 짧은 음성만으로 특정인 목소리를 흉내 내는 ‘딥보이스’...
-
트럼프, 7개 경합주 여론조사서 박빙 우위…전국 지지율선 해리스가 4%p 앞서 2
5일 미국 대선을 하루 앞둔 4일(현지 시간) 발표된 7개 경합주 여론조사에서...
-
극 나오면 좀 틀리는데 공부 좀 빡시게 해야지
-
국어 온수 수학 미적기준 약불 영어 온수 탐구 모름 국어가 어렵고 다음 해가 쉬운...
-
ㅈㄱㄴ 어케 생각하심
-
ㅠㅠ 또 나만 어렵지..
-
어디서 시간을 쓰나 봤더니 은근 거기서 오래걸림 … 연계+빨리읽기 면 되나요..
-
다른 거 고정1인데 수학만 4라면?
-
점수 그런 거 말고 그냥 하면 기분이 좋아요.. 물리는 건드릴 수라도 있는데 다른...
-
윤도영 찍특사요 4
연락주세요 ㅜㅠ
-
홈페이지 들어가보니깐 영어영문 경제 각각 백분위 77,81 이면 합격하던데 딱 3컷...
-
정법 질문! 2
1번이 왜 틀린거죠..
-
살짝 보수적으로 잡음 꼬리컷으로 잡아주면 혼선 올듯 걍 적정 성적으로 얘기한거니까 참고해주세용
-
시민불복종 3
칸트롤스 둘다 시민불복종을 행함으로써 법에대한존중감을 감소시킬수 있는가 이건 맞는얘기죠?
-
나 11
부끄러 우뜩함
-
예측 0
고전시가 낙지가 고전소설 유씨삼대록
-
문과도 2
C++이나 파이썬 배우는 이유가 뭐임?
-
‘아 뭐 실수한거같은데,,,’ 하고 뚫어져라 쳐다보면 50퍼는 실수한거더라
-
그냥 이런 생각하지 말고 문제 붙들고 일분 일초를 보내면 되지 않나
-
수학 하하 0
2학년말 정시 선언 후 3학년 때 배우는 확통 한 번도 한 적 없음 근데 한양대...
-
첫번째사진 밑줄친거-ㄱㄷ은 임정환쌤 리미트에서 한번도 설명해준적없는건데 뭐임? ㄴ은...
-
밧바 이만 1
ᄂᆡ일 오리라
-
수학 백분의 94는 다른거 100에 수렴해도 안되겠지..
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ