[칼럼] 상수함수와 정의역 제한을 통한 다항함수 추론
게시글 주소: https://i.orbi.kr/00069133455
상수함수와 정의역 제한.pdf
칼럼 받아가실 때 좋아요 하나 부탁드려요!
매번 좋아요 눌러주시는 분들 항상 감사합니다 ㅎㅎ
안녕하세요.
최근 어떤 학생분에게 다음과 같은 질문을 받았습니다.
다항함수에서 계산을 줄이는 스킬을 어느 정도 알아야 하나요?
저는 3년 전 업로드했던 칼럼 링크를 드리며,
수능 대비할 때 다항함수와 관련된 지엽적인 공식들을 많이 암기하지 않으셔도 됩니다.
저는 삼차함수 비율관계와 제가 생각했던 이 방법 정도만 씁니다.
라고 대답 드렸어요.
여러분들에게도 이 칼럼 다시 소개 드리면 좋을 것 같아 업로드합니다.
여러분에게 항상 도움이 되고 싶습니다.
감사합니다.
독보적으로 참신한 문제와 깔끔한 100쪽의 해설
김지헌 수학 핏모의고사 (지헌모) 2025 판매중입니다!!
올해 출판한 수학 실전모의고사는 3등급 학생들에게도 큰 도움이 될 것입니다.
쉬운 4점대 문제(준킬러 문항)는 현 기조에 맞춰 올해 6월 모의고사와 유사한 난이도로 구성했습니다.
어려운 4점대 문제(킬러 문항)는 참신하지만 중요한 개념을 포함하여, 학생들에게 꼭 알려주고 싶은 내용을 담았습니다.
또한, 해설은 높은 4등급의 학생들도 충분히 이해할 수 있도록 자세하게 작성했습니다.
이 모의고사는 3등급 학생들에게도 추천할 만합니다 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
" 2
-
예비고3 0
지금 내신 챙기느라 수1.수2 미적 챙길 시간이없는데ㅠ 내신끝나자마자 수12는...
-
생1 생각 때매 잠이 안온다
-
진짜있다니까 내 눈은 못 속이지 후후
-
백분위 기준으로는 써볼만한데 불안뜨는건 왜 그런거죠? 2
평균백분위만 보면 갈만한데 불안뜨는건 대학별 환산점수나 표준점수가 더 중요해서인가요?
-
격기3반
-
우1흥 4
왜들어왔냐
-
삼수가 끝난 시점에서 미미미누 올어바웃 입시에서 윤도영T가 하신 말씀들을 다시듣고...
-
오르비 첫글~! 22
눈팅만 하다가 처음으로 글 써봅니당 다들 방가워요
-
ㅈㄱㄴ
-
후...
-
작년 백분위 84 99 2 97 81
-
뻥이라는거임뇨
-
ㄹㅇ 그 시절로 돌아가면 좋겠다
-
안암? 오히려좋아
-
파이널 기간에 못 견디겠어서 평소에 가지도 않던 노래방 다님 자주는 아니고 매주...
-
ㅁㅊㄷㅁㅊㅇ
-
그럼 예를들어 백분위 70이면 작년 표점이 더 높을까요 올해 표점이 더 높을까요?...
-
진격거 코난 김전일 탐정학원q 킬라킬 끝
-
어떰?
-
수능기준으로 2컷까지는 받아봤는데 그이상으로는 안오르네요 문학이 문제라 문학과외를...
-
경희치 상향으로 질러볼만 할까요
-
대충 이런식으로 대학 생활 느낌 갈린다고 보면됨 ㅅㄱ
-
화1 6
과탐 원과목중에 제일 고였나요
-
입대 D-DAY 6
믿기지 않구만요
-
노벨상 나왓는디 노벨상 말구도 마니 함 ㅇㅈ하죠 우리과 떡상하면 조캣음뇨
-
볼까
-
문학론 감 떨어진거 같아서 다시 정리하고 싶은데 그릿 강의 어떰? 알파에 있는 기출...
-
기억을지우고싶어요 29
다시 그 전율을..
-
수학 마킹 검토를 안 했는데 고1 3모때 일의자리에 마킹해야 하는걸 십의자리에...
-
Just 궁금
-
공대희망합니다…
-
시험 딱3주 남았는데 요즘 공부 의욕이 안나요 1학년때는 나름 1.0으로 마무리...
-
고졸 9급 공무원 다시 team 수험생 참전... 11
재수 망하고 도피성으로 공무원 시험 준비해서 운 좋게 붙어 일하고 있는데 학벌...
-
과 신경 안쓰면 숭실대 이상 되는 학교 있을까요...?
-
아노하나 빙과 4월은너의거짓말 진격거 유루캠프 타카기양 바이올렛에버가든 더 있을거...
-
도파민 충전완뇨
-
저도 봐주세요 1
-
질문 받아요 6
전부 다 답변해드림
-
(단 의치한약수 제외)
-
요즘 이짤 너무 좋당 16
-
원나만 봤었어서 이제 블도 보는 중… 만해 ㅈㄴ 멋있네
-
뭐틀렸는지 관계없이?
-
고2 모의고사 고정 1등급인데 강기원 들을수 있을까요? +겨울방학 시즌에 공통은...
-
잔다
-
ㄹㅇ
-
생각해보니 다른과도 마찬가지인거 같은
-
약대되겠어 했는데 몇군데 되네.. 수의대도 그렇고 진짜 국어 올린게 대학라인을 바꿔주는듯
-
그냥궁금해서
차의함수 내용인건가
인수정리를 상수함수와 엮어 자세하게 설명해둔 버젼이라고 생각하시면 될 것 같아요 ㅎㅎ
제가 뭐를 잘못 눌렀는지 이 게시물은 댓글 알림이 안옵니다..!!
질문 사항 있으시면 쪽지로 부탁드려요!! 감사합니다!
약간 최고차항을 바로 날리는 느낌이라고 생각해도 되나요?
요약을 하자면, '어떤 조건을 만족하는 삼차함수'를 구할 때 '동일한 조건을 만족하는 이차함수를 구하는 방법'을 이용할 수 있습니다. 그리고 이를 다른 예시에서도 쭉 적용해볼 수 있습니다! 추가적인 질문 사항 있으시면 쪽지 부탁드려요!
잘읽었습니다. 신선한 충격이네요 ㅎㅎ
감사합니다! 큰 도움이 되길 바라요 ㅎㅎㅎ
감사합니다
좋은 글 감사합니다
도움이 되어 기뻐요!
이제 거리곱 정도는 기본..