f(x+y)=3f(x)f(y)
게시글 주소: https://i.orbi.kr/00069140426
수2 첫 개념공부 하는 중입니다.
f(x+y)=3f(x)f(y)이고, f'(0)=2 일때 f'(2022)/f(2022)의 값을 구하는 문제인데,
여기서 f(x+y)=3f(x)f(y)를 미분하면 f'(x+y)=3f'(x)f'(y)+3f(x)f'(y)라고 생각해서 풀었는데
이 식이 틀린 것 같더라구요.. 곱의 미분법을 사용해서 이런 식이 나왔는데 왜 틀렸는지 이유가 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
토가나오노 ㅂㅅ새끼 ㅋㅋ
-
화작 확통 영어 사문 정법 77 70 4 41 39 충남, 충북 갈 수 있을까요??
-
가군은 동국대 나군은 지방쪽에 쓰고 다군은 홍대쓰려고하는데 가능성있나요?
-
만나서 한 번 얘기해보고 싶음
-
Puzzle 0
-
인서울 공대나 메티컬은 확통 과탐해도 괜찮을까요 미적을 잘할자신이 없어가지요
-
시대인재 최수준 0
메가에 백호쌤 들을려다 안 맞는 것 같아서 시대인재 라이브로 들을려고 하는데...
-
짝녀 2
평소엔 먼저 연락도 오고 자주 디엠 보다가 어느 시점부터 하루에 한 번 디엠...
-
기하러 논술 6
한양대 중앙대 세종대 남았는데 미적 안한 기하러 붙을 확률 많이 낫나..? 확통은...
-
미적 할 거 ㅈㄴ 많다면서 걍 관성 따라 미적하는게 이해가 안된다면서 기하를...
-
자러 간다 3
-
그래도 다들 어디서 본 사람들임 ㅋㅋㅋㅋㅋ
-
공대 지망생 꿀팁 드림 11
만약 물리 노베이스인데 공대를 지원할 사람이라면 방학 때 물리 공부하고 들어가셈 안...
-
오프라인이네 이제 나 까인 거임?
-
ㆍ ㆍ ㆍ ㆍ ㆍ ㆍ ㆍ ㆍ
-
'섹스 관광 수도' 된 日도쿄…"전 세계男 성매매 원정 온다" 1
홍콩 일간지 사우스차이나모닝포스트(SCMP)가 17일 '아시아의 새로운 섹스 관광의...
-
ㅈㄱㄴ
-
성적표 발표 4
성적 발표일이 12월 6일이잖아요. 그럼 온라인으로는 12월 6일 00시부터 바로...
-
뭐냐 밤맛 존나 잘 느껴지는데 오...
-
가격, 멘탈관리 포함 했을때 뭐가 가장 베스트일까요?저는 약간 다른사람이랑 친목도...
-
컷이 40인게 말이안되는데 43봄 ;;
-
진심 무물. 1
에포트쓰고 답변해줌 너무 심심함뇨
-
예비 고2 0
예비 고2 인데 수학 상하 제대로 안되어있는데 파운데이션 상하하고 바로 수1,2...
-
난 20번 맞았으니까 나대지말고 가만히 있어줘 제발
-
미용실 예약완료 1
이제 자야지
-
혹시 중위권/중상위권(2컷~4등급) 학생들이 도움 될만한 수학 공부법(?) 좀 쓰면 수요가 있을까료 5
그냥 요새 상담하는 것 보면 대개 갈피를 못잡는 성적대가 요 성적대인 것 같음
-
탐구 고민 4
현재 약대를 목표로 공부를 하고있는 예비고3입니다. 최근에 과탐 원과목에서 이슈가...
-
김승리 이원화 0
이원화 수업도 ㄱㅊ은가요?? 별로면 그냥 인강으로 들으려고 하는데 딱히 지장 없나요??
-
난 처음 듣는데 유명한분 같아서
-
기하ㄱㄱ 8
꿀인걸안숨겨도사람들이안함...
-
돼지 빙고판 5
-
합격 힘든가요..??
-
90+- 점수인거같은데ㅠ 전전 가능할것같아 보이나요??? 쉽다는 의견이 꽤 되길래...
-
현실은 그냥 히키코모리임뇨
-
이거 소시민적 사고인가 13
예전엔 내 기준 조금이라도 불합리하다고 생각하면 난리 쳤는데 요즘은 어느 정도의...
-
아으 졸려 3
하암
-
그시간에 검토하는게 개이득같은데 어떻게 생각함
-
대성 1타 다지기 작업 들어가시는듯 책도 원래는 남자애들이 솔직히 안좋아할만한...
-
11시에 예약하고 학원 가려고했는데 마감이네..
-
괜히 점 찍는 가채점표 수능날이 처음 들고 갔다가 요즘 1. OMR 밀려 씀 2....
-
근데 언매 44번 16
아무리 평가원이 고장났다고 해도 정답선지에서 오류를 내는 일이 있을 수 있나요?...
-
비상 6
-
만점수준을 노린다면 가장 효과적인 공부방법은 뭘까요???
-
인증하는게개꿀잼인데 실채점까지기다려봄
-
자꾸 지구 4 12 틀린거나 국어 문학 안틀릴꺼를 틀린거 생각하면 속상한데.....
-
ㅇㅈ 4
원중
-
스펙 평가해주3뇨 11
180 70 18 연공재학 평가원 수학 100점 3번 연애 3번 어떰뇨
-
근데 뭔가 수학 이번에도 1컷 기가 막히게 85로 나올거 같은데 기분탓임? 23때도...
우리가 평소 하는 미분이 x에 대한 미분(d/dx)이라서 그렇죠 y를 y(x)처럼 x에 대한 함수로 생각하면 그렇게 미분할 수 없음을 알 수 있습니다
f(x+y)는 f'(x+y)로 미분할 수 없는 함수에요! 고등학교 미분에서는 무조건 '변수가 하나일 때'만 미분 가능한데, 여기서는 x랑 y가 모두 변할 수 있는 값이라 미분하면 큰일납니다! 해설지 보셨겠지만 미분계수의 정의 형태로 만들어서 푸는 게 올바른 풀이에요:)
y에 0 대입하고 x에 대해 미분해봐요
x와 y 모두 변수라 x와 y중에 하나는 상수로 두고 미분하는게 쉬웠어요