Curl-Div
게시글 주소: https://i.orbi.kr/00069376678
Curl-Divergence lemma라고 함수열의 수렴에 대해서 이야기 하는데 희한하게도 Curl과 Divergence에 bound를 주는 것을 가정으로 하고 있다. 직관적으로 이게 어떻게 연관되어 있는지 잘 와닿지 않는데, 일단 statement 먼저 보자.
The Curl-Div lemma. Suppose $u_m\rightharpoonup u, v_m\rightharpoonup v$ weakly in $L^2(\Omega;\Bbb R^3)$ on a domain $\Omega\subset\Bbb R^3$ while the sequences $\operatorname{div} u_m$ and $\operatorname{curl} v_m$ are relatively compact in $H^{-1}(\Omega)$. Then for any $\varphi\in C^\infty_0(\Omega)$ we have
$$\int_{\Omega}u_m\cdot v_m\varphi dx\to\int_{\Omega}u\cdot v\varphi dx$$
as $m\to\infty$.
여기서 나오는 $\cdot$ 은 Euclidean space에서의 내적을 의미한다. Statement의 의미를 다시 말하면, 미분에 bound를 줘서 nonlinear expression 의 weak continuity를 얻어내는 것이다.
이걸 differential form의 언어로 바꿔서 표현을 하기 시작하면, 이 curl과 div에 boundness 조건을 주는 것이 weak convergence에 어떤 영향을 주는지 좀 더 직관적으로 드러난다.
$M$을 closed oriented smooth $n$-manifold라고 하자. 이제 $u_m\rightharpoonup u, v_m\rightharpoonup v$ in $L^2$ such that $(d^* u_m), (dv_m)$ 들이 $H^{-1}$에서 relatively compact라고 하자. 이 조건은 위의 Curl-Div lemma에서 Curl과 Div의 relative compactness와 대응된다. $u_m, v_m$을 $u_m - u, v_m - v$로 바꿔서, $u = 0, v = 0$으로 가정할 수 있다. 그러면 Hodge decomp.에 의해,
$$u_m = da_m + d^* b_m + c_m,$$
$$v_m = df_m + d^* g_m + h_m,$$
where $c_m,h_m$ are harmonic 1-forms and $a_m \rightharpoonup 0, b_m \rightharpoonup 0, f_m \rightharpoonup 0, g_m \rightharpoonup 0$ in $W^{1.2}(M)$, $c_m \rightharpoonup 0, h_m \rightharpoonup 0$ in $L^2(M)$ 이런 것을 얻을 수 있다.
Hodge decomp.의 consequence중 하나가 $M$위에서의 space of harmonic 1-form들의 공간은 locally compact이다. 따라서, smooth하게 $c_m \to 0$, $h_m \to 0$ 된다. 또한 가정에 의해서 $\Delta a_m = d^* u_m, \Delta g_m = dv_m$이 $H^{-1}$에서 relatively compact이기 때문에, $(da_m),(d^* g_m)$은 $L^2$에서 precompact하게 들어가있다. 따라서,
$$u_m = d^* b_m + o(1),\quad v_m = df_m + o(1),$$
in $L^2$가 된다. 또한,
$$\langle u_m,v_m\rangle_g \omega_g = \ast (\langle d^*b_m, df_m\rangle_g) = (d\ast b_m)\wedge df_m = d((\ast b_m)\wedge df_m),$$
임을 알 수 있다. 여기가 그 "미분"의 모습이 드러나는 핵심적인 부분이다.
구체적으로 말하진 않겠지만, Rellich theorem 이라는 것이 있는데, 이것은 $b_m\to 0$ in $L^2$임을 imply한다. 따라서
$$\int_M \langle u_m,v_m\rangle_g\varphi\omega_g = \int_M d((\ast b_m)\wedge df_m)\varphi + o(1) = (-1)^n \int_M (\ast b_m)\wedge df_m\wedge d\varphi + o(1) = o(1).$$
따라서 앞선 Curl-Div lemma와 같은 결론을 낸다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
만약만약 만약에 여당과 야당이 동일한 한가지의 목표를 두고 정치를 한다면 (서로는...
-
나갈래
-
ㅇㅈ이나 할래 8
근데 지금 빡빡이사진은 진짜 아닌 것 같아서 2년 전 사진으로 재탕 하도 많이해서...
-
ㅇㅈ 2트 )) 4
어그로 ㅈㄴ 끌었습니다 ㅈㅅ합니다 사진은 저 맞아요
-
킥킥...그걸또...킥킥...
-
고고
-
공통 차영진 십일워 차영진 팔로워 (수1만 하다가 유기) 차영진 기무적...
-
좀비 아포칼립스 와도 스스로 인프라 구축해서 기지 세울듯
-
ㅠㅡㅠ
-
이게 맛있나?
-
사탐 의대 6
사탐 50 50 의대 ㄱㄴ?
-
애초에 감독관이 문제의 시작이지만 그걸 찍어서 유포한 사람은 진짜 무슨 생각인건지...
-
어떤지요
-
인증함 난 솔직히 그정도는 아니다 ㅇㅇ
-
심심한데 @긍정적분
-
그렇게 싫었음.. 열등감 씹오져서 대학생활 글 올라오는거 보면 짜증나서 바로 화면...
-
ㅇㅈ)) 14
펑 뻘글 구라핑 너무 많이 했는데 봐주세요 밤르비는 밤르비로
-
잘자요 2
내일 봐요
-
셋 다 대단하신 분들이지만 고민이 돼서요 여러분이라면 누구와 1년을 보내실 것...
-
보면 점 하나만 추가로 찍혀 있어도 복수 정답인데 타원 하나를 덜 채운 건 왜...
-
2층에서 마스크 쓰고 혼자 구경하면서 저거 찍다가 현장 스텝한테 혼남 ㅠ
-
진지하게 고려해봐?
-
올해 기출 이용해서 물2 스킬 설명하는 글 적고 싶었는데 2
1. 내가 만점이 아니고 2. 내가 스킬을 거의 정식으로 배운건 없기도 하고 3....
-
기분은 좋네요 ㅈ같은 반수 드디어 끝이네요...
-
이거 왜 이러죠?
-
갑자기 왜 메타 바꿔서 수열을 22번에 내고 수2는 변별력을 0으로 만드는거임?...
-
수능도끝났는데 3
할거추천좀
-
대충이라도
-
짠가요? 후한가요 아니면 적정?
-
성대 문과 vs 연대 스응산 어디가실건가요.. 혹시 연대 체대도 믿거체 느낌이 있을까요..
-
올 가능성 있음??
-
믿거나 말거나. 0
-
화작 0틀 88은 3인거같죠?
-
연락 오는 친구들 만나고 밥 사주기.. ㄹㅇ n수면 오랫동안 만나지도 않은 건데...
-
지금 누구라인잡아주다가 2월에 그사람좆되고 탈르비했을거같음 ㄹㅇ임
-
표준점수를 보는 한의대 가능한가요? ex) 경희 부산 원광
-
수학 선택과목 어케하시나요ㅜ
-
대성 이미지 찍먹 해봤는데 나쁘진 않는데 뭔가 강의 들으면서 개념공부 하는데에...
-
0. 과탐을 선택하지 않는다. 1. 과탐을 선택하지 않는다. 2. 절대로 과탐을...
-
80의 벽을 넘기위해.
-
나는 개인적으로 학창시절 연애 추천함
-
대성 지원가능점수<- 이거 기준이 도대체 뭐임? 진학사 기준 적정인데 대성에선 불안...
-
저격메타 뭐임? 2
ㄷㄷ 무섭네
-
가채점을 잘못 적었을 확률이 높죠? 개쫄림
-
이제 두 번만 버티면 성적표 ㅎㄷㄷ
-
일단 초성만 떼고봐도너무야함 그리고 수시를 넣는다고 하는것도 음란함.. 뭘...
-
결국 돌고돌아 낙지인가
-
아니 하,,,, 가채점을 omr보고 적긴 했는데 마지막에 마킹 마무리할때 너무...
-
한국어능력시험은 홀수형 주네
첫번째 댓글의 주인공이 되어보세요.