[10분 논리학] 누구나 이해할 수 있는 양화논리
게시글 주소: https://i.orbi.kr/00069456254
<얻어갈 개념어들>
연역적 논증(Deductive Argument), 선결조건 긍정의 오류(Affirming the Consequent), 지적 겸손(Intellectual Humility)
반영 원리(Reflection Principle), 주된 원리(Principal Principle), 무차별 원리(Principle of Indifference)
이성의 종속성(Affectionate Subordination of Reason), 행위의 이유와 열정의 역할(Reason for Action and the Role of Passion), 열정의 감정과 욕구 포함성(Inclusive Nature of Passion as Emotion and Desire)
양화사(Quantifier), 자유 변수와 구속 변수(Free and Bound Variables), 대상(domain)
타당성(validity), 건전성(soundness), 설득력(cogency)
안녕하세요 독서칼럼에 진심인 타르코프스키입니다.
[서론 생략]
출처:
https://1000wordphilosophy.com/2022/12/28/arguments/
참조 및 재구성.
(연습문제 1)
|
(연습문제 2)
잠자는 미녀 문제(Sleeping Beauty Problem)는 인식론과 확률론의 철학적 퍼즐로서, 다음과 같은 실험 상황을 제시한다: 일요일 밤에 미녀는 잠이 들고, 실험자는 공정한 동전을 던진다. 동전이 앞면(Heads)이 나오면, 미녀는 월요일에 한 번 깨어난 후 수요일까지 다시 잠들어 있다가 실험이 종료된다. 동전이 뒷면(Tails)이 나오면, 미녀는 월요일과 화요일에 각각 깨어나며, 월요일에 깨어난 후에는 기억을 지우는 약을 투여받아 그날 깨어났던 것을 잊게 된다. 이 상황에서 미녀가 깨어났을 때, 동전이 앞면이 나왔다는 명제(H)에 대해 어떤 신뢰도(credence)를 가져야 할지가 문제된다. 신뢰도는 0에서 1 사이의 값으로, 1은 해당 명제가 확실히 참임을, 0은 확실히 거짓임을, 0.5는 중립적인 입장을 나타낸다. 이 문제에 대한 해답은 두 가지 입장으로 나뉘는데, '반분주의자'(halfer)는 미녀가 H에 대해 1/2의 신뢰도를 가져야 한다고 주장하고, '삼분주의자'(thirder)는 1/3의 신뢰도를 가져야 한다고 주장한다. 반분주의자의 논거는 반영 원리(Reflection Principle)와 주된 원리(Principal Principle)에 기반한다. 반영 원리는 새로운 정보를 얻지 않는 한 미래에 가질 신뢰도를 현재에도 가져야 한다는 것이며, 주된 원리는 신뢰도가 실제 세계의 확률과 일치해야 한다는 것이다. 따라서 미녀는 깨어나기 전에도 H에 대해 1/2의 신뢰도를 가졌고, 깨어난 후에도 새로운 정보를 얻지 않았으므로 그 신뢰도를 유지해야 한다는 것이다. 반면 삼분주의자는 무차별 원리(Principle of Indifference)를 적용하여, 미녀가 깨어날 수 있는 세 가지 가능성—동전이 앞면이고 월요일에 깨어남, 동전이 뒷면이고 월요일에 깨어남, 동전이 뒷면이고 화요일에 깨어남—이 균등하므로 각각에 1/3의 신뢰도를 부여해야 한다고 주장한다. 추가로 삼분주의자는 미녀가 깨어났다는 사실 자체가 새로운 정보이며, 이는 동전이 뒷면일 때 깨어날 확률이 더 높으므로 H의 신뢰도를 1/3로 낮춰야 한다고 설명한다. 이 주장을 강화하기 위해 동전이 뒷면일 때 미녀를 100번 깨우는 변형 실험을 제시하면, 미녀가 깨어났을 때 동전이 뒷면일 가능성이 훨씬 높아지므로 신뢰도를 조정해야 함을 직감할 수 있다. 이러한 논쟁은 신뢰도를 언제, 어떻게 갱신해야 하는지, 그리고 어떤 정보가 새로운 증거로 간주되어야 하는지에 대한 근본적인 인식론적 질문을 제기하며, 철학적 확률과 과학 철학 등 다양한 분야에서 중요한 함의를 지닌다. 대부분의 철학자들은 삼분주의자의 입장이 옳다고 생각하지만, 그에 대한 최선의 논거에 대해서는 여전히 합의가 없다. |
<틀린 선택지> |
<틀린 선택지> |
<이 글에서 얻어갈 개념 3가지> |
(연습문제 3)
|
(연습문제 4)
양화 논리(quantificational logic) 또는 술어 논리(predicate logic)는 명제 논리(sentential logic)보다 다소 복잡하지만 여전히 비교적 기초적인 논리 체계이다. 명제 논리에서 원자문장(atomic formula)은 더 이상 분해될 수 없는 단순한 명제 문자로 구성된다. 반면 양화 논리에서는 원자문장이 주어와 술어로 구성되어 더 복잡한 구조를 가진다. 여기서 주어는 소문자로, 술어는 대문자로 표기하며, 예를 들어 "소크라테스는 인간이다"는 H(s)로 나타낸다. 또한 양화 논리에서도 부정(¬), 연결(∧), 선택(∨), 조건(→), 이중 조건(↔)과 같은 명제 논리의 논리 상수들은 그대로 사용된다. 변수(variable)는 x, y 등의 기호로 표현되며, 미지의 또는 지정되지 않은 항목을 나타낸다. 이러한 변수들은 자유 변수(free variable)인데, 이는 양화사(quantifier)에 의해 묶여야(bind) 비로소 문장이 된다. 양화사는 존재 양화사(∃x)와 전체 양화사(∀x)가 있으며, 각각 "어떤 x가 존재한다"와 "모든 x에 대하여"로 해석된다. 예를 들어 ∃x[H(x)]는 "어떤 x는 인간이다"를, ∀y[H(y)]는 "모든 y는 인간이다"를 의미한다. 양화사는 원자문장뿐만 아니라 분자문장에도 적용될 수 있으며, 다중 양화사를 사용할 때는 그 순서에 주의해야 한다. 양화 논리에서 증명을 하기 위해서는 대상(domain)을 지정해야 하는데, 이는 공식에서 사용되는 모든 개체들을 포함한다. 예를 들어 대상이 전 우주일 경우, ∃x[H(x)]는 참이지만 ∀x[H(x)]는 거짓이 된다. 또한 특정한 대상, 예를 들어 세 명의 학급 친구들로 이루어진 경우, 그들 모두가 학생이라면 ∀x[S(x)]로 모든 이가 학생임을 나타낼 수 있다. 양화 논리에서는 전체 일반화(universal generalization)와 개체화(instantiation)를 통해 논리를 전개할 수 있는데, 전자의 경우 모든 개체에 대한 진술로부터 특정 개체에 대한 진술을 유도하고, 후자의 경우 그 반대로 실시한다. 예를 들어 "모든 인간은 필멸자이다"라는 ∀x[H(x) → M(x)]와 "소크라테스는 인간이다"라는 H(s)로부터 "소크라테스는 필멸자이다"라는 M(s)을 이끌어낼 수 있다. 이러한 양화 논리를 통해 더 복잡한 문장과 논증을 형식화할 수 있지만, 술어 자체를 양화하거나 확률적 또는 필연적 진술을 형식화하는 등 더 복잡한 논의는 추후에 다루어야 할 것이다. |
<틀린 선택지> |
<틀린 선택지> |
<이 글에서 얻어갈 개념 3가지> |
(연습문제 5)
논증은 하나의 결론과 이를 지지하는 최소한의 전제들로 구성되며, 여기서 결론은 논증이 설득하려는 핵심 주장이고 전제들은 그 결론을 믿을 만한 이유들을 제공한다. 철학에서 '타당(validity)'이란 특별한 의미를 갖는데, 이는 전제들이 참이라면 결론도 반드시 참이 되는 논증의 구조적 성질을 말한다. 예를 들어, "모든 말은 포유류이다. 세바스찬은 말이다. 따라서 세바스찬은 포유류이다."라는 논증은 전제들이 참일 경우 결론이 참이 될 수밖에 없으므로 타당하다. 그러나 전제들이 참인데도 결론이 거짓일 수 있는 논증은 부당(invalid)하다. 논증의 강력함(strength)은 전제들이 참이라면 결론이 아마도 참일 것이라는 정도를 나타내며, 이는 전제들이 결론을 확률적으로 지지하는 경우에 해당한다. 예컨대, "누군가 루브르에 얼룩말을 풀어놓았다. 모나리자에 얼룩말 이빨 자국이 남았다. 따라서 모나리자는 얼룩말에 의해 손상되었다."라는 논증은 실제 세계의 지식을 고려할 때 전제들이 참이라면 결론이 아마도 참일 것이므로 강력하다. 건전(soundness)한 논증은 타당하며 모든 전제가 참인 경우로, 이러한 논증의 결론은 항상 참이다. 예를 들어, "만약 어떤 것이 물을 포함한다면 수소를 포함한다. 바다는 물을 포함한다. 따라서 바다는 수소를 포함한다."라는 논증은 타당하고 전제들이 모두 참이므로 건전하다. 한편, 논증이 강력하고 전제들이 모두 참이면 이는 설득력(cogency)이 있다고 하며, 이러한 논증의 결론은 아마도 참일 것이다. 논증에 이의를 제기하려면 그 논증이 부당하거나 약하거나 전제 중 하나 이상이 거짓임을 보이면 된다. 중요한 점은 타당성과 강력함은 전제와 결론 사이의 관계에 관한 것이며, 전제나 결론의 실제 진위 여부와는 별개이다. 그러므로 논증은 전제들이 결론을 어떻게 지지하는지에 따라 평가되며, 이는 설득력 있는 논증을 통해 청중이 결론을 받아들이도록 유도하는 데 있어서 핵심적이다. 결국 논증은 사람들이 어떤 문제에 대해 믿는 바를 이유와 함께 제시하는 것이며, 이는 일상생활에서 다양한 이슈에 대해 이루어진다. 따라서 논증의 구조와 그 타당성, 강력함, 건전성, 설득력을 이해하는 것은 효과적인 의사소통과 합리적 설득에 필수적이다. |
<틀린 선택지> |
<틀린 선택지> |
이 글에서 얻어갈 개념 3가지: |
오늘은 여기까지입니다. 읽어주셔서 감사합니다.
(p.s. 원하는 주제를 던져주시면 선정해서 지문으로 만들어드립니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
솔크 오랜만이라 뭘해야할지도 모르겠네 시X
-
진짜 미사카마코토공부법이 개사기인듯 나도 하러간다 라면서 누워있기
-
와…
-
연의vs카의 0
개원 생각없으면 무조건 연의인가요?
-
저녁에 온다 1
여기서 더 미루면 겁쟁이임
-
"수능 망해서 면목없다."며, 선생·강사들 피하지 마. 1
※ 편하게 말하려고 반말로 썼으니 양해 바랍니다. 무명의 수능 국어 강사인데,...
-
김종익 개념 들을거임..
-
인수분해 문제 해설 15
x^3=1의 허근을 w_1, w_2라 하자. 그러면 w_1^2+w_1+1=0임은...
-
다시 돌아왔다! 11
-
Kurzgesagt
-
20 21 현역 수시로 문과 대학 2년감 22 23 군수로 인생 첫 수능준비 24...
-
사실 알바 안 하는 개백수입니다 과외를 잡으려고 해도 잡히지도 않아서 동네에 있는...
-
저이제8등급됨뇨 9등급->8등급 ㅅㅅㅅ
-
라떼는 엑소 트와이스가 국룰이었슴뇨
-
성대vs시립대 1
꿈x 학교교사 하기싫음
-
n^5+n+1을 인수분해 하여라.
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
방학이 왔다는게 느껴지네요
-
탑 어떻게 생각하심뇨 14
아니 얼굴은 내 스타일이고 보컬 진짜 빅뱅에서 빠지면 안 되는 놈이라서 노래 들을...
-
아님 말구,,
-
대학에서 그렇게 보겠다는데 뭐 과탐 3등급 4등급 받으면 누가 과탐 하라고 칼들고...
-
기초가 부족하면 1월에 시작하는 조기반이 맞겠죠?
-
아무튼 그렇다고 함
-
ㅠ
-
대치동 어둠의 스킬 10
흐흐흐
-
이 기분 뭔지 아는 사람
-
이쪽은 진로가 어케됨?
-
아까 남은 거 먹는데 맛있음 ㄹㅇ
-
입시판 떠나고 연애 시작함뇨 수능이랑 연애 병행하면 둘 다 망할거같아서••
-
어디갔어 ㄷㅋㅈㄱㄱ
-
야 진학사 3칸 붙을확률이 30%라는데 할만한거 아님?? 야 텔그 50%면...
-
님들이라면 어디인가요? 듣보잡 의대와 이름난 한의대...
-
꺄르르 7
-
그냥 혼자서 공부하는 거는 그냥 그런데 학원 숙제는 뭔가 좀 꼬움
-
한양대 쓸건데 사학 사회 정치외교 철학 이중 뭐 쓰는것이 좋을까요? 텔그 자체예상...
-
여자친구가.. 8
점메추
-
인스타는 뭘 할 때마다 이상한 계정 취급당함 ㅎㅎㅎㅎㅎ 눈팅만 하니까 "너 팔로워...
-
07 자퇴생 현역으로 고려대 어문 노리는데 컷 어케되나요 9
안정적이게 들어갈려면 과목별 백분위 어느정도는 나와줘야함? 그리고 국어랑 수학...
-
원래는 컴 생각했는데 설전정 가면 컴 관련 공부도 할 수 있다기도 하고 설자전은...
-
전 알바하러 갑니다....
-
원서 ㅁㅌㅊ?? 1
-
N제https://www.orbi.kr/00068588542/N%EC%A0%9C%20...
-
모든것은 기브앤테이크죠 내가 학연에 의해 도움을 받을만한 위치에 있다면 그 위치에...
-
이런 말을 듣는다는거 어캐 생각함 내가 들은 말은 말은 아니구
-
외래어 표기 0
존재를 인지만 하던 규정이었는데 작수를 보면 이제 내 입장에서는 알아야 하는 규정에...
-
꿈의대학 성균관 2
꿈x 수학을 그나마 좋아하긴함 미적96 학교교사는 하기 싫음 강사라면 몰라도 여러분이라면??
-
제발 의치한약으로 좀 빠져줬으면
-
모모 겁나 이쁘네.....
-
올해 수능 미적분 27282930틀 85점입니다. 사설에선 보통 92점 나오긴하는데...
첫번째 댓글의 주인공이 되어보세요.