회원에 의해 삭제된 글입니다.
게시글 주소: https://i.orbi.kr/00069506365
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
큰확률로
-
대학생들 노트북 필수라는데 구체적으로 뭐할때 필요한건가요
-
검색 기능으로 어느정도 찾아지긴 하는데 검색으로 찾은 메시지 위아래 극히 일부만...
-
44344진학사에 해보니까 6칸으로 추합 예측됐는데 할만할까요+해양대 컴공도...
-
금사빠 공부법 0
같은 독서실의 모든 이성한테 차례대로 고백해서 경쟁자를 제거하는거임....
-
북반구 여름일때 남반구 겨울인거 우리 여름일때 남반구에서 눈오는거 뭔가 괴리감 나만그런가
-
하루카와는 못함 0
-
안녕하세요 한약학과 재학 중인 학생입니다. 한약학과에 대해 알려드리려 글 씁니다....
-
Taem 노프사 물론 70%는 저렙노프사빨임
-
현직 고 1 이라서 맞혔다 키킼ㅋ
-
증거는 없음뇨
-
이거 한줄쳤는데 댓글에 패드립이랑 욕달리더라
-
으아앙 ㅇㄷ가지
-
작년에 현역으로 지사약 입학했는데 계속 미련이 남아서 2학기 휴학하고 반수했습니다...
-
아...시베리아 고기압을 몸소 느껴보는구나
-
정식(?) 공지는 나중에 올릴게요. 전에 저 상담받은 분들은 이거 구매하시면...
-
솔크 오랜만이라 뭘해야할지도 모르겠네 시X
-
진짜 미사카마코토공부법이 개사기인듯 나도 하러간다 라면서 누워있기
-
와…
-
연의vs카의 0
개원 생각없으면 무조건 연의인가요?
-
저녁에 온다 2
여기서 더 미루면 겁쟁이임
-
"수능 망해서 면목없다."며, 선생·강사들 피하지 마. 2
※ 편하게 말하려고 반말로 썼으니 양해 바랍니다. 무명의 수능 국어 강사인데,...
-
김종익 개념 들을거임..
-
인수분해 문제 해설 22
x^3=1의 허근을 w_1, w_2라 하자. 그러면 w_1^2+w_1+1=0임은...
-
다시 돌아왔다! 14
-
Kurzgesagt
-
20 21 현역 수시로 문과 대학 2년감 22 23 군수로 인생 첫 수능준비 24...
-
사실 알바 안 하는 개백수입니다 과외를 잡으려고 해도 잡히지도 않아서 동네에 있는...
-
저이제8등급됨뇨 9등급->8등급 ㅅㅅㅅ
-
라떼는 엑소 트와이스가 국룰이었슴뇨
-
성대vs시립대 1
꿈x 학교교사 하기싫음
-
n^5+n+1을 인수분해 하여라.
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
방학이 왔다는게 느껴지네요
-
탑 어떻게 생각하심뇨 16
아니 얼굴은 내 스타일이고 보컬 진짜 빅뱅에서 빠지면 안 되는 놈이라서 노래 들을...
-
아님 말구,,
-
대학에서 그렇게 보겠다는데 뭐 과탐 3등급 4등급 받으면 누가 과탐 하라고 칼들고...
-
기초가 부족하면 1월에 시작하는 조기반이 맞겠죠?
-
아무튼 그렇다고 함
-
ㅠ
-
대치동 어둠의 스킬 10
흐흐흐
-
이 기분 뭔지 아는 사람
-
이쪽은 진로가 어케됨?
-
아까 남은 거 먹는데 맛있음 ㄹㅇ
-
입시판 떠나고 연애 시작함뇨 수능이랑 연애 병행하면 둘 다 망할거같아서••
-
어디갔어 ㄷㅋㅈㄱㄱ
-
야 진학사 3칸 붙을확률이 30%라는데 할만한거 아님?? 야 텔그 50%면...
와드
확정적인건 0~3에서만 음수 or 0인 거 아닌가요?
3근처에서는 피적분함수의 부호가 결정되어야겠죠
하지만 모든 실수에 대해서 피적분함수의 부호가 결정되는 건 아니지 않나요
오차함수 그려보니까 ㄹㅇ 안되는거 같기도 하고
아 문제 자체는 오류 없는데 제곱>=0은 고려 안하고 낸 느낌이긴 하네요
그래프가 항상 양수인 게 아니라 적분 값이 양수인 거임
내가 맞았기때문에 오류없음.
아무튼 그런거임 ㅠ
우변 식을 좌변으로 넘겨서
g(x)=0 상수함수니까
모든 실수 x에 대하여 g'(x)=0
이런식으로 접근하셔도 될듯?
1) 'x가 3 이상일 때'
적분 방향이 +이므로 t가 3이상일 때 (t² + 2t)f(t)는 0 이상이어야 한다
=> 함수값이 양수다가 음수 조금 찍먹하고 다시 양수 돌아오면 적분값은 여전히 양수에요~
물론 3 직후에는 f>=0 이겠지만요
위 에피 두 분께선 글을 대충 읽으신 것 같고
님이 하고 싶은 말이 뭔진 알겠는데 "적분 방향이 -이므로 t가 3보다 작을 때 (t² + 2t)f(t)는 0보다 작거나 같아야 한다" 이게 아닐거임
케이스 두 개 그래프 그려보면 첫 그림에서 아마 x>=0 범위에선 그래프가 바닥에 쫙 깔릴 거고 첫 봉우리 넓이가 둘째 봉우리 넓이보다 작으면 저 조건이 성립함
둘째 그림은 저거 그대로일 텐데 위에서와 마찬가지 원리로 저 조건이 성립할 거고
(그림들은 밑댓에)
그래서 오류는 아니지 않을까?
사실 나 저거 틀렸고 10모 수학 2뜬 수학병신이니까 반박 환영...
근데 그럼 윗분 말이 정확한 거 아닌가요?
(x^2+2x)f(x)가 x<3에서 꼭 계속 음수일 필요는 없다는 게 결국 정적분이 양수라고 피적분함수가 내내 양수는 아니라는 건데
틀린 말이란 얘기가 아니라 러프하게 설명하셨단 뜻이었어요
아 글을 대충 읽었다길래...
어쨌든 저 말이 맞아요
오류는 없어요
첫 케이스를 직접 구간을 나누어 적분해 보면, x<0에서 1/9x^4(x+3)^2, x>0에서 0으로 나와 항상 양수인 걸 확인할 수 있어요
사실 생각해 보면 부호 문제를 고려할 필요가 없는 게, 계산만 제대로 했다면 미적분학의 기본정리에 의해 2f(x)f'(x)=2(x^2+2x)f(x)가 모든 실수에서 성립하고 f(3)=0이면 문제의 식도 모든 실수에 대해 성립해야만 하고, 그럼 당연히 우변의 식도 항상 0보다 크거나 같겠죠
적분값이 0이상일때 피적분함수가 무조건 부호가 결정되야하는게아니라 3근방에서만 결정되는것입니다
3에서 적분거꾸로갈때 양수가 쌓이다가 음수가 조금 갉아먹어도 여전히양수입니다