쉽고 재밋고 개 유명한 문제 (3)
게시글 주소: https://i.orbi.kr/00070232954
전 문제들처럼 엄청 쉽진 않지만 여전히 쉬워요, 근데 너무 유명해서 몇명은 알꺼같은데 ,,
6개의 점이 있고, 이 점들중 임의의 두 점을 빨간색 혹은 파란색 선분으로 연결했다.
(어떻게 3점을 골라도 일직선 위에 있진 않다.)
이 때 한 색의 선분으로만 이루어진 삼각형이 있음을 보여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
실제 성적표가 안좋게 나오면 어쩌지 싶어서 미칠거같음 4
진짜 미칠거같음 죽겠음
-
ㅁㅊ 뭔 근크림이여 했는데 막상 먹어보니 달달허이 맛있긴 했음 파인애플 피자도 ㅁㅊ...
-
개념+기출 한번 하고 이제 n제 풀어보려 하는데 어떤가요?
-
오늘은 치팅데이 8
피맥이 최고
-
제발올해성불하게해주세요제발제발제발 하나님 아버지 예수 그리스도께 기원하옵나이다.. 아멘
-
게으름은 어케고침뇨? 20
이새끼 맨날 아 진짜 공부해야지 하면서 잠들고 다음날 일어나면 5분 깔짝대다가...
-
키가9등급인게서러움뇨
-
경북대 수학과/수학교육과 교수가 되고싶움... 경북대 수학교육과에 30초 교수님...
-
송하냥이 ㅇㅈ 18
캬
-
수능보다 편입이 더 나음? 연고대까지는 편입이 나은것같은데 그 위부터는 모르겠음...
-
3월쯤인가ㅏ??
-
누구임뇨?
-
제발
-
현재 고졸이고 그냥 일하고 있었습니다 취미로 코딩을 하고 있는데 너무 적성에 잘...
-
고대되냐마냐 안절부절하는거랑은 차원이 다른 서러움이 몰려옴뇨 사람이 어떻게...
-
ㅈㄱㄴ
-
아닌게 이상하지 ㄹㅇ
-
얼었다... 4
-
나이 성별 축처진가죽을 뛰어넘은 진짜사랑
-
1~5권 사놓구 안보고있음...
-
ㅇㅇ??
-
화작 실수 한문제만 호머하면 이렇게되는데.. 아.
-
언 또 속
-
리본 여러개라서 이상하다는 말 들은 뒤로는 그거만 보여서 집중을 못하겠음..
-
ㄹㅇ
-
군수생 달린다 7
고고고곡
-
아침에 1
떠있는 해의 색 내 맘대로 색칠해
-
화작 기다려라 0
형이 간다
-
과연 누가 더 행복할까
-
그거 재미있나요?
-
생윤은 고정하고 윤사, 사문 둘 중에 하나 고를려고 하는데 각 과목의 특징 같은 걸...
-
물리 고인물이 되기 위해 하루에 공부를 10시간한다치면 물리에 3시간은 하고있는데...
-
실제 등급컷이랑 많이 다를려나
-
이거는남자들도다동의할듯
-
내신은 1.5쯤에 진학사 보면 고대식 200점 만점에 199입니다
-
반박 안받음
-
미적 기출 1회 N제 10개 실모 120개
-
대석열 vs 의룡인 팝콘 개꿀잼ㅋㅋ 누가 먼저 부러질까
-
일리 있는 말이 되기 때문이죠
-
모닝콜 부탁할께 9
내 전번 다들 알지?
-
잇올 재수정규반은 꼭 2월에 입학해야하는 건가요? 3월에 입학할 수는 없나요??
-
이과 딱대 8
생물학 책 읽는 문과 ㅁㅌㅊ? (p.s)강대국의 흥망은 이거 다읽고 다시 읽기 시작할 예정
-
고3때 혹은 예비고3때 선택과목 변경해보신분 있나여.. 어떻게 말해야 바꿔주실까요…
-
사탕 하나만 받아도 너무 좋아하는게 보인데,,,,
-
시험기간이라서 못봄
-
3수박고 3뜬 인생ㅈ망허수는 다시 나가봄..
-
닉변마렵네 2
걍 아무생각 없이 지었는데 슬슬 쪽팔림
-
팥붕이라니 17
전 팥 자체를 안 먹슴뇨 송편도 깨송편만 취급함.
이거 6개 점이 다 일직선상이면 어캄
아 ㅈㅅ 그거 빼야되네
어떤 3점도 일직선 위에 있지않음뇨
이런 기본적인걸 빼먹다니
임의의 점 p를 선택합니다. p에서 다른 5개의 점으로 연결되는 선분은 5개가 있습니다. 이 선분들은 빨간색 또는 파란색입니다. 비둘기집 원리에 의해, p에서 뻗어나가는 선분 중 적어도 3개는 같은 색을 가집니다. 일반성을 잃지 않고, 이 색을 빨간색이라고 가정하겠습니다. (만약 파란색이라면 빨간색과 파란색을 바꿔서 생각하면 됩니다.)
p와 빨간색 선분으로 연결된 3개의 점을 q, r, s라고 부르겠습니다. 이제 세 점 q, r, s 사이의 선분을 살펴봅니다.
만약 q, r, s를 연결하는 선분 중 하나라도 빨간색이라면, 예를 들어 q와 r을 연결하는 선분이 빨간색이라면, p, q, r은 모두 빨간색 선분으로 연결된 삼각형을 이룹니다. 따라서 증명이 끝납니다.
만약 q, r, s를 연결하는 모든 선분이 파란색이라면, q, r, s는 모두 파란색 선분으로 연결된 삼각형을 이룹니다. 따라서 증명이 끝납니다.
어떤 경우든, 한 가지 색의 선분으로만 이루어진 삼각형이 존재함을 보였습니다.
결론
6개의 점이 있고, 이 점들 중 임의의 두 점을 빨간색 혹은 파란색 선분으로 연결하면, 반드시 한 가지 색의 선분으로만 이루어진 삼각형이 존재합니다. 이 문제는 램지 수 R(3,3) = 6의 한 예시입니다. 즉, 6개의 점이 있으면 어떤 방식으로 두 가지 색으로 색칠하더라도 단색 삼각형이 반드시 나타난다는 의미입니다.
흠..
완벽하긴하네..
ㄷㄷㄷㄷ
지피티 냄새
멍청한 공대생은 GPT 없이 못 살아
님 항상 보면 수학 이론들 많이 알고 계시던데 수학과 지망하시나요
넨
오 ㄷㄷ 멋지네요 필즈상 수상하시길
그건 좀..
뭐임 또 나만 저능하지 ㅜ
저거 지피티임뇨
풀엇음뇨 헤으응
한 점 기준으로 같은 색 선분 3개는
필수인거 생각하면 풀리네용
이거 맞아요
선이 교차해서 만들어지는 삼각형 말고
점민 이어서 만들어지는 삼각형만 따지면
점 세개를 생각하고 빨빨파로 비원색 삼각형이 있음
그러면 한 빨변에 대해서 파파로 비원색 삼각형을 또만듬
이때 마지막으로 만든 삼각형에서부터 대충 대각선 그으면 파란색이든 빨간색이든 원색 삼각형이 생김
머지 이게
먼지 모르겟음
이거 됨뇨?
삼각형이 주어진 6개의 점으로만 이루어져야됨뇨
망했뇨
애초에 이풀이도 틀린거같기도 걍 머리가 안돌아감
문제가 너무 길어요 요약해주세요