미적분러라면 이 정도는
게시글 주소: https://i.orbi.kr/00070627172
저번 수능 20번 문제 기억하시나요.
딱히 해석할 필요 없이 그냥 대입 잘 하면 풀리는 문제였습니다.
하지만 그 문제에
기하적인 해석을 곁들여서 이해할 수 있으면 좋을 것 같아요.
그런 느낌의 해석이 이전 수능에 나오기도 했구요. (2022수능 30번인데, 밑에서 보여드릴게요.)
일단 작수 20번 문제 읽어보겠습니다.
그려보면,
이런 상황이네요.
다음 부분 보겠습니다.
일단 x>k 인 부분은 그냥 알려줬어요. 그럼 궁금한 건 x<k 부분이죠.
일단 얘를 통해 x<k인 부분의 정보를 알 수 있다고 느껴야 합니다.
함수가 막 합성돼있다고 쫄 필요 없어요. 차근차근 보면 됩니다.
일단 우리가 f(x)에 대해 아는 게 x>k니까
k보다 큰 x를 저기에 대입한다고 생각해볼게요.
x>k일 때,
f(x)는 0 ~ k 의 함숫값을 가집니다.
즉...
0 ~ k 의 어떤 수를 다시 f(x)에 넣었을 때의 얘기를 하는 중인겁니다.
그러니까 식을 통해 이 노란색 영역에서 f(x)가 어떻게 생겨먹었는지를 알 수 있는거죠.
이제 기하적인 해석을 시작해보겠습니다.
우선 식을 변형해줍니다.
아까도 말했지만 x>k에서만 관찰해줄 겁니다. 그 뜻은,
우변에 결과물은 k보다 큰 값이 나온다는거네요.
그나저나 이 식 약간 역함수가 연상되지 않나요?
잘 안 보인다면
이렇게 g(x)를 정의하고 다시 볼게요.
즉
밑에꺼 보면 확실히 보이죠.
f(x)와 f(x) /3이 역함수 관계에 있다는 건,
f(x)를 y=x에 대해 대칭시킨 뒤에 3배를 하면 다시 f(x)가 나온다
는 뜻입니다.
여기가 조금 어렵죠? 지금 생각할 게 좀 많아요.
제가 가독성을 위해 범위를 빼고 러프하게 말했지만, 범위도 고려해야 해요.
냅다 f(x)와 f(x)/3가 역함수인건 아니니까요.
잠시 멈춰서 생각을 하다가 넘어가보세요.
여기가 핵심입니다.
충분히 고민해보셨나요? 이제 같이 보겠습니다
이게 우리가 아는 f(x)구요,
x>k 구간의 f(x)를 y=x에 대해 대칭시켜주면
이렇게 됩니다. 이제 여기에 3배를 해주면
모든 함숫값이 3배가 됩니다.
지금 나온 연두색이 바로 0~k 구간의 f(x)에요.
f(x)의 x>k 구간과,
f(x)/3 함수의 0<x<k 구간이
역함수로 대응되는 구간입니다.
이제 남은 건 계산입니다.
k가 뭐였냐면
얘였습니다. 조금 정리해서,
이걸 뽑아낼 수 있겠죠.
문제에서 물어본거랑 비슷하게 생겼네요.
양변을 세제곱해주면 문제에서 물어본 복잡한 저거가
실은 얘였다는 걸 알 수 있겠죠.
지금 x자리에다가
얘 넣으면 함숫값 뭔지가 궁금한거에요.
이제 그림으로 돌아가볼게요.
일단 저기가 12인게 보여야 해요. 왜 12냐면
얘를 뒤집어준거니까요.
x-3=9, 즉 x=12
근데 구해야하는 건 12가 아니죠
그거 3배해줘야 합니다. 뒤집고 3배라고 했으니까요.
답은 36입니다.
저는 사실 문제를 처음 봤을 때 딱 이렇게 풀었습니다.
그냥 대입 몇 번 하면 나온다는 건 다른 분들한테 듣고 나서야 알았어요.
조금 허망했던 기억이 있네요..
그나저나 식을 이렇게 인식하는 건 종종 쓰이죠. 특히 미적분러라면 더 그럴 겁니다.
중요한 건 f(x)를 기준으로 서술하는 것입니다.
"f(x)를 뒤집고 3배하면 다시 f(x)가 나온다!" 처럼
f(x) 기준으로 서술해야 안 헷갈려요.
관련 문제 하나 던져드리고 글을 마치겠습니다.
심심하면 풀어보세요
(출처: 2021 시행 대수능 미적분 30번)
그냥 계산하지 마시고, 제가 보여드린 것처럼
이 부분을 기하적으로 인식하면서 해보세요.
더 좋은 글로 또 찾아뵙겠습니다.
좋아요 눌러주고 가주세요 ㅎㅎ
#무민
0 XDK (+10,000)
-
10,000
-
본좌 등장 4
다시 퇴장
-
보고싶으면 인스타가면 한가득인데
-
동국대 뱃지<<<이 새끼들 죽이러 가고 싶으면 개추 1
후드려 패고 도태한남들의 분노를 온 몸으로 느끼게 하고 싶으면 개추
-
아이온큐 사랑해 0
너덕분에 스시먹어
-
본인 말년병장 ㅇㅈ 27
군필 오반수 드가자 ㅋㅋ
-
ㅇㅈ 29
끗
-
찍을때웃참ㅈㄹ함
-
오랜만에왓더니,
-
2년임 3년임???
-
존나 뜨네
-
인생은 원래 외로운 거야
-
大846 운전병 (일, 빵 중 하나임)이고 딱 2년 전에 재수 망치고 공군 왔는데...
-
슬슬 4
자러가야겠군
-
지금 인증함 12
ㅇㅇ 배고파서 먹는중 포인트는 여친이 해준것임
-
이시간에 배달은 첨시켜보는데...
-
자유전공 예체능이 있는데 국영탐 전형임 과 제한 없음 전국 수학 빼고 다...
-
맞89 6
ㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱ
-
동뱃을 달면 존잘이 된다
-
원서철에 진학사 칸수 더 떨어지는거 감안해서 단국대 적정 + 가군 세종대 스나이핑...
-
수시 6광탈하고 재수확정인 학생인데요.. 수능 화작 확통 영어 한지 사문 원점수론...
-
또 나만 진심이었지
-
나 못봐ㅆ어~~~
-
ㅇㅈ 22
얼굴이항아리다 이정도못생김이면합격이냐
-
근데 메가대성은 0
모의지원을 왜이렇게 못맞추는거임? 사람 많을텐데
-
알려주세요... 신분증 인증 말고 좀 더 간편한 방법 없을까요
-
Team 04 ㅇㅈ 14
-
제곧내.
-
어쩌다. 글들보다가 댓글중에 "27학년도부턴 재수가 안되서"라는 문구를 봤는데,...
-
ㅇㅈ 10
ㅇ
-
야식이나 먹으러 가야겠다
-
ㅇㅈ 9
컽! 컽!
-
진학사 5칸 믿어도 되는거죠..? 메가에서 상향에 30프로만 나와도 신경 안썻을텐데...
-
음음 이게 몇년만인지
-
ㅈ됐다 1
또그분들오셨다 순진한옵붕이들도망쳐
-
ㅇㅈ 메타를 진심으로 즐길 수 있게 되엇다 이말이야
-
ㅇㅈ 26
옛날 사진들
-
수많은 기만자들의 기만질에 정신을 차리지 못하겠습니다 0
가면무도회 머임 ㅆㅍ
-
나도 ㅇㅈ 6
-
반쪽ㅇㅈ 10
예전에했었나
-
그렇게들알아라 지금하면비교당해서 자살각이다
-
ㅇㅈ 0
하사십 시즌2 작년껀데 1문제풀고 드랍 ㅋㅋ 사실 123 다사버렸다가 1,3만...
-
아오 2
교재보는거포기 족보나외워야지
-
현역 땐 엔축, 영인자, 주인공함수 잡기 이런 테마 문제 위주로 풀고, 기출 변형인...
-
이거 개궁금한데 과금해볼까
-
ㅇㅈ 21
오랜만에 오르비들옴 대학 또 합격하고나니.. 재밌는게 많다 다들 집밖을 나가라
-
무슨메타임 1
ㅇㅅㅇ
항상 잘 보고 있어요 좋은 글 감사합니다
미적분안했는데 이렇게 풀엇으면 ㅁㅌㅊ인가요
칭찬좀
수학상하 때도 열심히 하신듯요
저는 그래서 24수능 28하고 비슷하다고 생각하면서 풀었었네요..(근데 틀림 ㅜㅜ)
우악 토나와
오랜만이에요 :)
칼럼 잘 읽고 갑니다..! (0,k)에서 그냥 적절한 임의의 함수가 있겠지..하고 넘어갔는데 이런 방법으로 구해볼 수도 있었군요!
선생님 덕에 새롭게 배워가고 갑니다
가장 먼저 시도했었던 방법이네요 ㅋㅋ
확대축소 안 하고 바로 치환 때려도 나오는 거 같아유.
차피 f(x) (k<x) 는 일대일 대응이니깐 바로 역함수로
저도 역함수로 풀었는데 10분 잡아먹은것 같네요 ㅋㅋㅜ
ㄷㄷ..
저렇게 풀고 으쓱하다가
대입 풀이보고...ㅋㅋ
아니 요즘 수학 진짜 어렵네 ㅋㅋㅋㅋ
시간 ㅈㄴ 박아서 역함수로 풀었는데 대입 딸깍의 허망함은
나랑 똑같이 했네
저 방식으로 풀려하면서 k값을 정리할 때쯤 종이 쳐서 못풀었습니다 ㅠㅠ 5분만 더 줬으면 풀었을텐데
저도 막히고 나서 이방식으로 풀었는데 ㅋㅋ
풀이보고 허탈했음ㅋㅋㅋㅋ