칼럼[1] : 망각과 싸우는 방법
게시글 주소: https://i.orbi.kr/00070764952
안녕하세요
첫 번째 공부 이야기
[1] 망각과 싸우는 방법
-부제 : 수학 노트 작성 공부법에 대하여
입니다
짧지 않은 글이지만
저의 수학 실력 향상에 가장 큰 도움을 준 방법에 대한 설명이에요
2등급~높음3등급 분들에게 가장 도움이 되리라 생각합니다
1. 밑 빠진 독에 물 붓기?
오늘 공부한 내용, 오늘 풀이한 문제는
공부를 제대로 했다는 가정 하에
잘 기억이 날 거에요
자려고 누워서도 생각이 날 테죠
뿌듯한 그 느낌 저도 알아요
새로운 거 하나를 배웠다…난 더 강해졌다…흠냐…
슬프게도 일 주일만 지나면
우리는 분명 까먹습니다
컴퓨터가 아니라 사람이니까요
여기서 문제가 시작돼요
우리는 문제를 풀면서 수학 공부를 합니다
잘 풀릴 때가 아니라 오래 걸린 문제나 풀지 못한 문제에서
학습은 이루어져요
내가 장악하지 못한 문제를 고민하고 풀이법을 알아가는 것
그게 수학 실력을 높이는 방법의 기본이라고 생각해요
그렇지만 문제가 있어요
분명 오늘 열심히 공부한 문제인데
나중에 비슷한 아이디어를 사용하는 문제
심지어는 오늘 풀었던 바로 그 문제를
똑같이 또 틀린다는거죠
한 번은 그렇다 쳐도
두 번 세 번 네 번…
너무나 안 풀리는 문제를 만나 해설을 읽었는데
저번에 못 떠올린 바로 그 아이디어가 적혀 있을 때
환장할 노릇이죠
밑 빠진 독에 물 붓기라는 생각이 들고
나는 재능이 없는 건가, 대체 언제쯤 이걸 정복할 수 있을까?
그런 암담한 기분이 들어요
이에 대한 해결 방법에는 두 가지가 있다고 생각해요
첫째로는 정말 어마어마하게 많은 실패를 경험하는 방법이 있겠죠
엄청나게 많은 문제를 풀이하고, 계속 벽에 부딪힌다면
결국에는 그 벽을 넘을 수 있겠죠
하지만 불가능합니다
우리 목표는 수학 강사가 되는 게 아니라
올해 안에 대학을 가는 거니까요
그래서 제가 생각한 방법이
바로 수학 노트 작성이에요
수능 수학 문제는
생각보다 다양하지 않아요
문제마다 반복되는 상황과 아이디어들이 있고
그 아이디어를 떠올리게 해주는 일종의 표지도
한정적이라고 생각해요
그렇기에 그 표지와 아이디어들을 효율적으로 학습할 수 있다면
효과적인 실력 향상이 가능하겠죠
2. 수학 노트란?
먼저 방법부터 제시하고, 상세한 설명을 덧붙일게요
준비물은 수학 노트로 사용할 노트 한 권과
뭐가 됐든 여러분 실력에 맞는 수학 컨텐츠
그거면 충분해요
- 1. 수학 문제를 풀이한다
- 2. 안 풀리거나 오래 걸린 문제를 만난다
- 3. 해당 문제를 왜 못 풀었는지 분석하고 학습한다
- 4. 내가 그 문제를 정복하지 못한 핵심을 한 문장으로 요약한다
- 5. 해당 문장을 수학 노트에 정리한다
- 6. 수학 노트를 매일매일 누적 복습한다
누군가는 어, 겨우 이거야? 라고 생각하고
누군가는 엄청 빡세다고 생각할지도 모르겠네요
그럼 상세하게 설명해 보도록 할게요
1) 문제를 푼다
문제를 푸시면 됩니다. 다만 한 가지 유의점은, 시간을 재면서 풀이하는 편이 좋다고 말씀드리고 싶어요
예를 들어 설맞이 n제를 통해 공부해야지
라고 생각을 하셨다면
한 문제 풀고 답을 보는 것보다는
요 다음 다섯 문제를 묶어서 몇분 내로 풀어봐야지
라는 식으로
살짝 빡빡하게 목표를 설정하고 푸는 것이 좋다는 말이에요
시험 상황에서 우리는 준킬러 한 문제를 풀 때마다 답을 확인할 수 없으니까요
이렇게 공부하는 편이 심리적 훈련에 도움이 됩니다
그리고 자신에게 맞는 수학 컨텐츠는
정답률이 50퍼센트정도 나오는 문제집이라고 생각합니다
술술 멋지게 풀리는 문제집은 기분만 좋을 뿐
이미 알고 있는 것들에 대한 훈련 이상의 무언가를 얻을 수 없고
반대로 너무 막히는 문제집은 공부를 지속하기가 어려우니까요
2, 3) 안 풀리거나 오래 걸리는 문제를 만나고 학습한다
내 실력에 버거운 문제를 만났습니다
그러면 이제 학습이 일어날 때라는 거죠
아예 접근을 해내지 못했다면
해설지 첫 줄을 읽고 아이디어를 얻은 뒤 나머지 풀이를 전개해보고
중간에 막혔다면
거기서 한 발짝 나아간 부분까지의 해설을 읽고 나머지를 시도해보고
그런 식으로 문제의 답을 논리적으로 도출합니다
안 풀리는 문제가 있을 때
그리고 한 번 더 필연성을 따져가며 복기까지 한다면
이제 이 문제는 내가 아는 문제가 된 것이겠죠
아마 여기까지는 많은 분들이 이미 하고 계실거에요
설마 풀고 해설 보고 던져버리는 식의 공부를 하는 사람은 없겠죠?
4, 5) 해당 문제에서 나에게 부족했던 부분을
한 문장으로 추출하고, 노트에 정리한다
여기서부터가 이 방법의 핵심입니다
혼자 힘으로 답에 도달하지 못했거나
비효율적이고 과도한 풀이를 했다면
그건 아마 그 문제 전체가 다 어려워서가 아닐 거에요
하나의 문제를 풀어내기 위해 필요한 여러 단계들 중
하나의 핵심적인 연결고리를 찾지 못했거나
시작점을 잡지 못하는 경우가 대부분이에요
그렇다면 나에게 부족한 부분
즉 내 수학 실력이 향상되기 위해 해결해야 할 문제점은
이 문제를 못 푼다가 아니라
이 문제를 푸는데 필요한 A라는 요소를
몰랐거나
알고 있지만 끌어내지 못한 것에 있겠지요
문제를 공부한다는건 그 요소를 찾아내는 과정이에요
그리고 그렇게 찾아낸 수학적 도구를
스스로가 알아들을 수 있는 간결한 문장으로
일반화해서 표현하는 것
이것이 제가 알려드리고자 하는
노트 정리법의 핵심이에요
이해를 돕기 위해 제 수학 노트에 있는 내용의 일부를 가져와봤어요
-기울기가 1인 직선은 풀이에 중요하게 작용하는 경우가 많다.
>직각이등변삼각형의 생성을 통한 닮음 관찰/x좌표와 y좌표간의 연결고리/길이를 옮기는 도구
plus) 기울기가 4/3이나 3/4인 경우는 바로 직각삼각형을 떠올리자
-모르는 좌표를 설정하는 방법에는 두 가지가 있다.
>(a, b)로 설정하는 방법과 (a, a에 대한 식)으로 설정하는 방법. 전자와 후자 각각 장단점이 명확하므로 상황을 관찰한 뒤에 풀이 방향을 생각하자
-복잡한 삼각형 구조는 각표시가 우선이며, 닮음관계 관찰을 놓치는 경우가 많으니 경계하자
-도형 문제에서 자주 놓치는 요소는 사인법칙과 닮음이다
-절댓값 조건의 핵심은 0보다 크거나 같다는 점에 있으므로, 절댓값이 포함된 조건의 해석은 이를 가장 우선시해야 한다
-역함수가 미분 가능하다면 원함수에 미분계수가 0인 지점이 존재하지 않는다(단, 정의된 구간에 항상 주의한다)
간결하게 정리하라고 해서 반드시 한 문장일 필요는 없어요
내가 놓친 그 풀이적 요소를 다른 문제에도 적용할 수 있도록, 되도록 일반성 있는 언어로 풀어내면 된답니다
또한 다항함수의 비율 관계나 도형 문제 접근법처럼
자주 보며 익숙해져야 하는 내용들도 함께 정리할 수 있어요
6) 매일 누적 복습한다
사실 이 부분은 별거 아니어 보이지만
이 방법에서 가장 핵심적이고 지키기 어려운 부분이에요
이렇게 수학노트를 열심히 작성만 한다고 해서
우리가 그 내용을 정복할 수 있는 건 아니니까요
정리만 하고 복습을 게을리한다면
밑 빠진 독에 물 붓기가 되는건 마찬가지에요
오늘 처음 노트 정리를 시작했다면
그만큼의 내용을 저녁 공부가 끝나기 전에 복습해줍니다
어떤 상황에서 사용된 내용인지 떠올려주면서요
여기에 5분이 걸렸다고 해볼게요
그리고 다음 날, 추가적으로 노트를 작성하게 될거고
역시 저녁 공부가 끝났어요
그럼 이제 누적 복습을 할 시간이에요
어제 쓴 내용을 포함해서, 노트의 첫 부분부터 오늘 쓴 부분까지
전체를 복습해줍니다
오늘 새로이 작성한 내용의 양이 어제와 같다고 가정할 때
과연 복습에 10분이 걸릴까요?
아니요
앞부분을 복습하는 데 걸리는 시간은 점점 줄어들게 되고
나중에는 노트의 앞부분은 정말 훑어보듯이 눈에 스치는 것만으로도 복습할 수 있게 됩니다
노트 한 권이 다 채워질 무렵이 되면
노트 전체를 복습하는 것마저도
그리 부담되는 일이 아니게 만드는 것
그게 누적 복습의 목표랍니다
3. 마치며
제가 이번 글에서 알려드릴 방법은 이게 끝이에요
듣기에는 쉬워 보이지만 정말 강한 의지가 필요해요
그러나 그 효과는 다른 어떤 공부 방법보다
뛰어나다고 생각해요
재능과 수학적 센스가 부족한 사람도
이 방법을 통해 수능 수학이 요구하는 생각의 도구들을
자신의 언어로 표현하고 이를 익혀나간다면
적어도 수능 수학만큼은 잘할 수 있을거라 생각해요
90점을 넘기지 못하고 80초중반에 정체되었던 제가
평가원 백분위 99도 받아보고
사설 모의고사에서 10분 20분씩 시간을 남기는 일도 생길 만큼
어디서 수학을 꽤나 잘한다고 말할 수 있게 된 데는
이 방법을 통해 공부한 것이 가장 큰 도움이 되었으니까요
오늘의 공부 이야기는 이쯤에서 마치도록 할게요
디테일한 부분에 궁금한 점이 있거나
다음 공부 이야기에서 개선되었으면 하는 부분이 있다면
무엇이든 편하게 댓글로 말씀해주세요
저는 올해 원서 접수가 끝난 후에
다음 공부 이야기
[2] 실수를 줄이는 방법
에서 다시 찾아뵙겠습니다
도움이 되었다면
좋아요, 팔로우 한번씩 부탁드립니다 :)
[현월의 공부 이야기]
[0] 인사
https://orbi.kr/00070753590/%5B0%5D%20새내기%20칼럼러%20인사드립니다%20:)
[1] 망각과 싸우는 방법
https://orbi.kr/00070764952/칼럼%5B1%5D%20:%20망각과%20싸우는%20방법
[2] 실수와 싸우는 방법
0 XDK (+10,000)
-
10,000
-
서울과학기술대학교 합격생을 위한 노크선배 꿀팁 [과기대25] [동아리 추천] 0
대학커뮤니티 노크에서 선발한 서울과학기술대학교 선배가 오르비에 있는 예비...
-
샤인미 끝냈음뇨 5
-
보닌집 설날특 0
아빠차로 편도 4~5시간 이상 걸리는 거리라 일단 연휴 시작때 내려가서 친척들...
-
맞팔구 7
-
넌 나를 위한 공주지
-
맛아 0
8천원순대국밥
-
오늘 여사친들이랑 술마시는데 옷 뭘입고가야할까 추천좀.. 10
LOOK 2개인데 한번만 골라줘요.... 키 185/ 몸무게 80 입니다.....
-
칫솔 치약
-
양 응디 0
-
화작하면 1등급은 힘들거같아서 그시간에 사탐 수학 최대한 끌어올리는 전략으로...
-
지금 괜찮아 문장편 듣고있는데 다 듣고 또선생으로 넘어가도 괜찮을까요? 그리고...
-
수능국어1등급 1
예비고2 입니다 2023학년도 수능풀어봤는데(시간은 안잼.. 대충 1시간 반 정도...
-
휴학까지 하면 로딩기간이 말이 안됨..안 그래도 늙었는데
-
성대 자연계열 붙었고 서강대 생명과학과 기다리고 있어요. 공대 갈 생각은 없고...
-
영조 13년(1737)에는 이현필이 영조의 잘못 26가지를 공격했다가 귀양을 가기도...
-
영어만큼은 원툴로 잘하는데...
-
이게 무슨뜻일까여?
-
더블카운팅 30번에 박고 교란순열 29번에 박기 +기하는 공간기하 1개 더
-
롯데월드 11
자이로드롭 왜 운행함?.?
-
집 바로앞에 있는데는 잼민이들 너무 많고 시설도 좀 구려서 가기 싫음... 5분...
-
매월승리 0
매월승리 시즌 1까지는 기출이던데 그냥 마더텅 풀고 시즌 2 부터 하는거 어떰요
-
자꾸 드는데 환불할까 흠.. 언매 공부할 시간에 사탐 등급 하나라도 더 올리는게...
-
사유: 기어를 3단으로 해놓고 운행해서 엔진정지 4번 연속으로 일어남 시뮬레이션이...
-
카톡 운영정책이 너무 싫어서 카톡 탈퇴해버림.. 카톡계정자체가 없음 메세지로도...
-
내 오랜 꿈이다... 어쩌다가 이렇게 됐는지
-
3박4일이라는데 이게 맞나요... 부모님도 이거땜에 싸우던데 하...
-
사라질 직종이 어떤 것일까는 정확히 예측 불가능한거임?
-
복지부 교육부 멍청한놈들 때문에 이게 뭔 혼란이람
-
다이어트중이라 밥 남김 이게 남긴거냐는 말은 ㄴㄴㄴㄴ
-
ㅇㅂㄱ 0
으아아
-
표지의 상징은 희망입니다. ㅎㅎ 실제책 내지는 맛보기와 달리 표지와 비슷한 색으로...
-
얘들아 @@이 야한게임한대~
-
에 대해서 1년전쯤 학부생수준에서 자필로 규명해놓았던 자료를 공유합니다 ㅇㅇ...
-
성대가 조발이 가능한 이유와 다른 학교가 못하는 이유 0
보통 조기발표 하는 학교는 정시에서 특별전형(농어촌, 기회균등, 외국인, 장애인...
-
아가기상 9
우웅
-
세계관 재정립 4
공허참에 의하면 전건이 거짓이면 명제가 참이다 p->q 에서 p가 거짓이면...
-
피램 화작 보는데 글씨가 많이 작긴하네 그냥 뽑아서 풀어야하나
-
자이 고난도나 마더텅 고난도, 이투스 15분 킬러 다 풀어봤는데 좀 쉽더라구요 현재...
-
전 한끼정도만 집에있는거 먹고 다른건 나가서먹거나 배달인듯..
-
지방교대에용 점공률 42즈음이고 작년에 예비 50까진가 돈거같은데
-
두 줄이네요 9
독감이
-
외로움 이런거 말고 학점에서 불리함 등등
-
‘시험 난이도 함부로 예단하기’ 이거같음 내가 그러다가 망했거든..
-
혹시 695.49 점공 몇등인지 봐주실 분 계신가요? 만덕 사례해드려요
-
입결은 연>>>경희지만 사회나가면 어디가 더 유리할까요..? 취업 잘되는건...
-
여캐일러 투척 4
화2 정복 3일차
-
교재 퀄리티가 개지림요. 종이질이 걍 넘사고 360도로 펴지는거 필기할때 개편해요....
당연하다고만 생각해서 소홀히했던 부분이네용 잘봤습니다
이상 한줄요약이었습니다
글은 잘 읽어봤어요