미적분 문제 (2000덕)
게시글 주소: https://i.orbi.kr/00071139139
첫 풀이 2000덕 드리겠습니다!
(+ 자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
쌓아두었던 책이 갑자기 넘어지면서 텀블러를 쳐서 결국 물바다 됨 ㅅㅂ
-
집에 콕 박혀서 행복하게 살텐데 어렵구나 어려워
-
아니 컨텐츠 관리자님 15
대체 정모 언제하는거에요 그거만 기달리잖아 나
-
우웅...
-
얼마만에 찍는 강좌otㄷㄷㄷㄷ 1타를 되찾아오겠다는 의지신가요
-
시간이나 떼워야겠다 군의관 가는 게 더 손해던데 요새는
-
저는 확통 처음할때 진입장벽 높아서 쩔쩔 헤맸는데 기하는 확통 이상일까요?
-
피시방으로 슈웃~~
-
씰링 벗겨져있고 사이다는 한모금 남아있고 얼음만 채워져있는데 배달기사가 트롤했나 ㅅㅂ
-
올오카,TIM, 앱스키마,아수라일지라도,매월승리 이렇게 풀 커리 다하면 양 충분...
-
우울짤 8
아
-
안쓰러웠는디 ㅋㅋ
-
‘수시로 서울대를 가는 사람이 1명이라도 있는가.’ 매년 1명이상 가면 평반임
-
걍짜증남 독서 8지문하지
-
군댜가려고 피뽑히고 다니고 슬프네요.. 당일음주,1시간내 흠연하고 사우나가서 과격한운동이나 해야지
-
네
-
수2만 끝내고 기출 풀어보려하는데 교육청은 좀 지금쓰기에 아까워서 재작년 더프 이런거 해봐야하나
-
어제 학교 축제때 노래불렀더니 연락받았다네...
-
근데 오르비에서도 14
서울대 수시일반 <<- 이런 누가 봐도 빡센 고트 전형이나 갓반자사 수시는 안 까이는듯요?
-
초중학교 공부만 했고 사회성이 없었고 친구 1명 있었으나 친구가 타지로 전학을...
f(x)=0, f(x)=1/2 (사실 찍음요ㅋㅋ gg)
y에 0을 대입해보면 f(x)=2f(x)*f(0) => f==0 or f(0)=1/2
f(0)=1/2인 경우.
x에 0을 대입해보면 f(2y)=f(y).
f(1)=c라고 하자. 그러면 n이 무한대로 갈 때 f(2^n)=c이다.
f(alpha)=c가 아닌 alpha가 존재한다고 치자. (alpha is not 0).
n이 무한대로 갈 때 f(alpha)=f(2^n(alpha))=f(2^n)=c이므로 모순이다.
따라서 모든 0이 아닌 x에 대해서 f(x)=c이고, f는 연속함수, f(0)=1/2이므로, f==1/2밖에 해가 없다.
즉, 모든 해는 f==0, f==1/2.
이거 맞나 미적분을 잘 몰라가지고 ;
정답!
앗싸
어떤 실수 d != 0과 실수 a에 대해 f(a)= d이면, f(a+2*0) = d = 2*d*f(0)이므로 f(0)=1/2이다.
연속의 정의에 따라 실수 ε가 존재하여 |x|<ε이면 |f(x)-1/2|<1/4, 특히 f(x)>1/4인데 n = max([log_2(|a|)-log_2(ε)+1], [log_2(|d|)+3])에 대해 |f(a/2^n)| = |2*f(0)*f(a/2^n)*1/2| = |f(0+2*a/2^n)*1/2| = |f(a/2^(n-1))*1/2| = |f(a/2^(n-2))*1/2^2| = ... = |f(a)| * 1/2^n < |d| *1/|d|*1/4 = 1/4이고 a/2^n < a*ε/a = ε이므로 모순이다.
(단, [x]는 x보다 작은 최대의 정수, max(a, b)는 a와 b 중 최댓값)
한문장은 걍 불가능이라 두문장으로
문제 조건 안쓰고 연속 정의로 함요
근데 f(x)=1/2도 안되는거 아닌가요
아 되는구나
케이스 하나 안봤네요
아 문제를 잘못 읽었네 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
굉장히 엄밀한 증명이네요ㄷㄷ
개망함요
f(0)=1 되는걸로 봐서
정확히 말하자면 두 번째 문장은 ‘f(2x)=2f(x)가 성립하고 f(0)=1/2인 함수는 존재하지 않는다’를 증명한 셈...
사실 이게 더 어려울지도